Skip to main content

What do we find in Human Atherosclerosis that Provides Insight into the Hemodynamic Factors in Atherogenesis?

  • Conference paper
Pathobiology of the Human Atherosclerotic Plaque

Abstract

A prominent feature of human atherosclerosis is that despite a number of systemic influences, plaque deposition tends to be a focal process with predominant localization at arterial branch points and bifurcations. Furthermore, certain arteries such as the carotid and coronary arteries and those of the lower extremity are particularly prone to plaque formation while others such as those of the upper extremity are rarely affected. Both the focal and selective distribution of plaques have been attributed to local differences in hemodynamic conditions. For many years it was thought that high shear stress damaged the endothelium and was an initiating factor in plaque formation (1, 2). The proposed relationship among high shear stress, endothelial injury and plaque deposition was based on in vitro experimental observations and in vivo observations in experimental animals. Not until the distribution of human atherosclerotic plaques was studied by making precise quantitative correlations of plaque localization with hemodynamic conditions did it become apparent that quite the opposite was true (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fry DL (1973) Responses of arterial wall to certain physical factors. In: Atherogenesis, Initiating Factors. Ciba Foundation Symposium. Amsterdam Scientific, pp. 93–125.

    Google Scholar 

  2. Ross R, Glomset J (1986) The pathogenesis of atherosclerosis. New Engl J Med 295:369.

    Article  Google Scholar 

  3. Zairns CK, Giddens DP, Bharadvaj BK, et al. (1983) Carotid bifurcation atherosclerosis: Quantitation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 53:502–514.

    Google Scholar 

  4. Peterson RE, Livingston KE, Escobar A (1960) Development and distribution of gross atherosclerotic lesions at cervical carotid bifurcation. Neurology 10:955.

    PubMed  CAS  Google Scholar 

  5. McGill HC, et al. (1968) General findings of the International Atherosclerosis Project. Lab Invest 18:498.

    Google Scholar 

  6. Heath D, Smith P, Harris P, et al. (1973) The atherosclerotic human carotid sinus. J Pathol 110:49.

    Article  PubMed  CAS  Google Scholar 

  7. Bharadvaj BK, Mabon RF, Giddens DP (1982a) Steady flow in a model of the human carotid bifurcation, Part I. Flow visualization. J Biochem 15:349–362.

    CAS  Google Scholar 

  8. Partnentier EM, Morton WA, Petschek HE (1981) Platelet aggregate formation in a region of separated blood flow. Phys Fluids 20:2012–2021.

    Article  Google Scholar 

  9. Benditt EP (1974) Evidence for a monoclonal origin of human atherosclerotic plaques and some implications. Circulation 50:650–652.

    PubMed  CAS  Google Scholar 

  10. Ku DN, Giddens DP, Phillips DJ, et al. (1985) Hemodynamics of the normal human carotid bifurcation: In vitro and in vivo studies. Ultrasound in Med and Biol (11)1:13–26.

    Google Scholar 

  11. Zarins CK, Bomberger RA, Glagov S (1981) Localization of stenosis: Increased flow velocity inhibits atherogenesis. Circulation 64 (Suppl II):221–227.

    Google Scholar 

  12. Ku DN, Zarins CK, Giddens DP, et al. (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation: Positive correlation between plaque localization and low and oscillating shear stress. Arteriosclerosis 5:292–302.

    Google Scholar 

  13. Ku DN, Giddens DP (1983) Pulsatile flow in a model carotid bifurcation. Arteriosclerosis 3:31–39.

    Article  PubMed  CAS  Google Scholar 

  14. Fry DL (1976) Hemodynamic forces in atherogenesis. In: Steinberg P Cerebrovascular Diseases. Raven Press, pp. 77–95.

    Google Scholar 

  15. Svidland A (1983) The localization of sudanophilic and fibrous plaques in the main left coronary bifurcation. Atherosclerosis 48:139–145.

    Article  Google Scholar 

  16. Granata L, Olsson RA, Huvos A, Gregg DE (1965) Coronary inflow and oxygen usage following cardiac sympathetic nerve stimulator and unanesthetized dogs. Circ Res 16:114.

    PubMed  CAS  Google Scholar 

  17. Gregg DE, Khouri EM, Rayford CR (1965) Systemic and coronary energetics in the resting unanesthetized dog. Circ Res 16:102.

    PubMed  CAS  Google Scholar 

  18. Laurent D, Bolenc-Williams C, Williams FL, Katz LN (1956) Effects of heart rate on coronary flow and cardiac oxygen consumption. Am J Physiol 185:355–364.

    PubMed  CAS  Google Scholar 

  19. Boudoulas H, Rittgers SE, Lewis RP, Leier CV, Weissler Am (1979) Changes in diastolic time with various pharmacologic agents. Circulation 60:164–169.

    PubMed  CAS  Google Scholar 

  20. Beere PA, Glagov S, Zarins CK (1984) Retarding effect of lowered heart rate on coronary atherosclerosis. Science 226:180–182.

    Article  PubMed  CAS  Google Scholar 

  21. Schroll M, Hagerup LM (1977) Risk factors of myocardial infarction and death in men aged 50 at entry. Dan Med Bull 24:252.

    PubMed  CAS  Google Scholar 

  22. Dyer AR, Persky V, Stamler J, et al. (1980) Heart rate as a prognostic factor for coronary heart disease and mortality: Findings in three Chicago epidemiologic studies. Am J Epidemiol 112:736.

    PubMed  CAS  Google Scholar 

  23. Williams PT, Wood PD, Haskell WL, Vranizan KM (1982. The effects of running mileage and duration on plasma lipoprotein levels. JAMA 247:2674.

    Article  PubMed  CAS  Google Scholar 

  24. Williams PT, Haskell WL, Vranizan KM, et al. (1985) Associations of resting heart rate with concentrations of lipoprotein subfractions in sedentary men. Circulation 71:441.

    Article  PubMed  CAS  Google Scholar 

  25. Glagov S (1972) Hemodynamic risk factors: Mechanical stress, mural architecture, medial nutrition and the vulnerability of arteries to atherosclerosis. In: Wissler RW, Geer JC (eds) The Pathogenesis of Atherosclerosis. Baltimore: Williams and Wilkens, pp. 164–199

    Google Scholar 

  26. Guyton AC (1961) Textbook of Medical Physiology (2nd edition). Philadelphia and London: Saunders, p. 356.

    Google Scholar 

  27. Zarins CK, Zatina MA, Giddens DP, Ku DN, Glagov S (1987) Shear stress regulation of artery lumen diameter in experimental atherogenesis. J Vase Surg 5(3): 413–420.

    CAS  Google Scholar 

  28. Schumacker HB Jr (1970) Aneurysm development and degenerative changes in dilated artery proximal to arteriovenous fistual. Surg Gynecol Obstet 130:636.

    Google Scholar 

  29. Szilagyi DE, Elliott JP, Hageman JH, Smith RF, Dall’Oloma CA (1973) Biologic fate of autogenous vein implants as arterial substitutes. Surgery 178:232.

    CAS  Google Scholar 

  30. Kamiya A, Togawa T (1980) Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am J Physiol 239 (Heart Circ Physiol 8):H14–H21.

    PubMed  CAS  Google Scholar 

  31. Smeisko V, Kozik J, Dolezel S (1985) Role of endothelium in the control of arterial diameter by blood flow. Blood Vessles 22:247–251.

    Google Scholar 

  32. Langille BL, O’Donnell F (1986) Reductions in arterial diameter produced by chronic diseases in blood flow are endothelial-dependent. Science 231:405–407.

    Article  PubMed  CAS  Google Scholar 

  33. Bond MD, Adams MR, Bullock BC (1981) Complicating factors in evaluating coronary artery atherosclerosis. Artery 9:21.

    PubMed  CAS  Google Scholar 

  34. Glagov S, Weissenberg E, Kolletis C, Stankunavicius R, Zarins CK (1986) Compensatory enlargement of human atherosclerotic coronary arteries prevents narrowing of the lumen. FASEB 45(3):583.

    Google Scholar 

  35. Glagov S, Weisenberg E, Zarins CK, Kolletis G, Stankunavicius R (1987) Compensatory enlargement of human atherosclerotic coronary arteries. New Engl J Med 316:1371–1375.

    Article  PubMed  CAS  Google Scholar 

  36. Glagov S, Zarins CK (1983) Quantitating atherosclerosis: Problems of definition. In: Bond MG, Insull W, Glagov S, Chandler AB, Cornhill F (eds) Clinical Diagnosis of Atherosclerosis: Quantitative Methods of Evaluation. New York: Springer-Verlag, pp. 11–35.

    Google Scholar 

  37. Crawford T, Levene CL (1953) Medial thinning in atheroma. J Pathol Bact 66:19.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this paper

Cite this paper

Zarins, C.K., Glagov, S., Giddens, D.P. (1990). What do we find in Human Atherosclerosis that Provides Insight into the Hemodynamic Factors in Atherogenesis?. In: Glagov, S., Newman, W.P., Schaffer, S.A. (eds) Pathobiology of the Human Atherosclerotic Plaque. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3326-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3326-8_21

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7968-6

  • Online ISBN: 978-1-4612-3326-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics