Skip to main content

Mechanisms of Calcification in Atherosclerosis

  • Conference paper
Book cover Pathobiology of the Human Atherosclerotic Plaque

Abstract

Calcification of atherosclerotic plaque is widely regarded by physicians and pathologists as a late manifestation of atherosclerosis. Such an attitude accords more importance to the early events in atherogenesis, and fails to properly take into account the morbidity-producing potential of arterial calcification. Although there is some evidence to suggest a degree of reversibility in mostly lipid plaques, once infiltration of the plaque by insoluble calcium phosphate salts has occurred, there may be little likelihood of spontaneous reversal. Furthermore, the persistence of rigid mineral in the plaque causes a drastic loss of local arterial elasticity, and may add permanence and inflexibility to intimal surface irregularities which in turn may promote local blood stasis, turbulence and thrombus formation. Finally, breakdown of endothelial integrity and arterial structure might be expected to occur most frequently in association with rigid, calcified atherosclerotic plaques. The breakdown of endothelium exposes blood to extrinsic factors of the coagulation cascade, and is often associated with local thrombogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Daoud AS, Frank AS, Jarmolych J, Franco WT, Fritz KE (1985) Ultrastructural and elemental analyses of calcification of advanced aortic atherosclerosis. Exp Mol Pathol 43:687–697.

    Article  Google Scholar 

  2. Paegel RD (1969) Ultrastructure of calcium deposits in atherosclerotic human aortas. J Ultrastr Res 26: 412–423.

    Article  Google Scholar 

  3. Tanimura A, McGregor DH, Anderson HC (1983) Matrix vesicles in atherosclerotic calcification. Proc Soc Exp Biol and Med 172:173–177.

    CAS  Google Scholar 

  4. Tanimura A, McGregor DH, Anderson HC (1986) Calcification in atherosclerosis. I. Human studies. J Exp Pathol 2:261–273.

    PubMed  CAS  Google Scholar 

  5. Tanimura A, McGregor DH, Anderson HC (1986) Calcification in atherosclerosis. II. Animal studies. J Exp Pathol 2:275–297.

    PubMed  CAS  Google Scholar 

  6. Kim KM (1976) Calcification of matrix vesicles in human aortic valve and aortic media. Fed Proc 35: 156–162.

    PubMed  CAS  Google Scholar 

  7. Kim KM, Huang SN (1972) Ultrastructural study of dystrophic calcification of human aortic valve. Lab Invest 26:481–482.

    Google Scholar 

  8. Kim KM, Yaligoresky JM, Mergner WJ, Jones RG, Pendergrass, RF, Trump BF (1976) Aging changes in the human aortic valve in relation to dystrophic calcification. Human Pathol 7:47–60.

    Article  CAS  Google Scholar 

  9. Schoen FJ, Levy RJ, Nelson AC, Bernhard WF, Nashef A, Hawley M (1985) Mechanisms and progression of experimental bioprosthetic heart valve calcification. Lab Invest 52:523–532.

    PubMed  CAS  Google Scholar 

  10. Harasaki H, Murray JD, McMahon J, Kiraly RJ, Fields A, Nose Y (1981) Calficication in left ventricular assist devices. Artificial Organs 5 (suppl):497–503.

    Google Scholar 

  11. Anderson HC (1983) Calcific diseases: A concept. Arch Pathol and Lab Med 107:341–348.

    CAS  Google Scholar 

  12. Posner AS (1969) Crystal chemistry of bone mineral. Physiol Rev 49:760–792.

    PubMed  CAS  Google Scholar 

  13. Anderson HC (1969) Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol 41:59–72.

    Article  PubMed  CAS  Google Scholar 

  14. Bonucci E (1970) Fine structure and histochemistry of calcifying globules in epiphyseal cartilage. Z Zellforsch and Mikr Anat 103:192–217.

    Article  CAS  Google Scholar 

  15. Peress NS, Anderson HC, Sajdera SW (1974) The lipids of matrix vesicles from bovine fetal epiphyseal cartilage. Calcif Tiss Res 14:275–281.

    Article  CAS  Google Scholar 

  16. Wuthier RE (1975) Lipid composition of isolated cartilage cells, membranes and matrix vesicles. Biochem Biophys Acta 409:128–143.

    PubMed  CAS  Google Scholar 

  17. Matsuzawa T, Anderson HC (1971) Phosphatases of epiphyseal cartilage studied by electron microscopic cytochemical methods. J Histochem and Cytochem 19:801–808.

    Article  CAS  Google Scholar 

  18. Akisaka T, Gay CV (1985) Ultrastructural localization of calcium-activated adenosine triphosphatase (Ca+-ATPase) in growth plate cartilage. J Histochem and Cytochem 33:925–932.

    Article  CAS  Google Scholar 

  19. Ali SY, Sajdera SW, Anderson HC (1970) Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc Natl Acad Sci USA 67:1513–1520.

    Article  PubMed  CAS  Google Scholar 

  20. Anderson HC, Matsuzawa T, Sajdera SW, Ali SY (1970) Membranous particles in calcifying cartilage matrix. Trans NY Acad Sci (Series II) 32:619–630.

    CAS  Google Scholar 

  21. Hsu HHT (1983) Purification and partial characterization of ATP pyrophosphohydrolase from fetal bovine epiphyseal cartilage. J Biol Chem 258:3463–3468.

    PubMed  CAS  Google Scholar 

  22. Siegel SA, Hummel CF, Carty RP (1983) The role of nucleoside triphosphate pyrophosphohydrolase in in vitro nucleoside triphosphate-dependent matrix vesicle calcification. J Biol Chem 258:8601–8607.

    PubMed  CAS  Google Scholar 

  23. Hsu HHT, Anderson HC (1978) Calcification of isolated matrix vesicles and reconstituted vesicles from fetal bovine cartilage. Proc Natl Acad Sci USA 75:3805–3808.

    Article  PubMed  CAS  Google Scholar 

  24. Kanabe S, Hsu HHT, Cecil RNA, Anderson HC (1983) Electron microscopic localization of adenosine triphosphate (ATP)-hydrolysing activity in isolated matrix vesicles and reconstituted vesicles from calf cartilage. J Histochem and Cytochem 31:462–470.

    Article  CAS  Google Scholar 

  25. Sajdera SW, Franklin S, Fortuna R (1976) Matrix vesicles of bovine fetal cartilage: Metabolic potential and solubilization with detergents. Fed Proc 35:154–155.

    PubMed  CAS  Google Scholar 

  26. Boskey AL, Bullough PG (1984) Cartilage calcification: Normal and aberrant. Scan Elec Micros 11:943–952.

    Google Scholar 

  27. Dimitrovsky E, Boskey AL, Minick CR, Posner AS (1981) Lipids associated with aortic calcification. Calcif Tiss Internat 33:314.

    Google Scholar 

  28. Wuthier RE, Gore ST (1977) Partition of inorganic ions and phospholipids in isolated cell, membrane and matrix vesicle fractions: Evidence for Ca-Pi-acidic phospholipid complexes. Calcif Tiss Res 24:163–171.

    Article  CAS  Google Scholar 

  29. Boskey AL, Posner AS (1977) In vitro nucleation of hydroxyapatite by a bone calcium-phospholipid-phosphate complex. Calcif Tiss Res 22 (5):197–201.

    Google Scholar 

  30. Boyan-Salyers BD, Boskey AL (1980) Relationship between proteolipids and calcium-phospholipid-phosphate complexes in Bacterionema matruchotii calcification. Calcif Tiss Intern 30:167–174.

    Article  CAS  Google Scholar 

  31. Boyan BD, Landis WJ, Knight J, Dereszewski G, Zeagler J (1985) Microbial hydroxyapatite formation as a mode of proteolipid-dependent membrane-mediated calcification. Scan Elec Micros IV:1793–1800.

    Google Scholar 

  32. Ennever J, Vogel JJ, Rider LJ, Boyan-Salyers B (1976) Nucleation of microbiologic calcification by proteolipid. Proc Soc Exp Biol Med 152:147–150.

    PubMed  CAS  Google Scholar 

  33. Ennever J, Boyan-Salyers B, Riggan LJ (1977) Proteolipid and bone matrix calcification. J Dent Res 56:967–970.

    Article  PubMed  CAS  Google Scholar 

  34. Romeo R, Augustyn JM, Fritz KE, Daoud AS (1984) Characterization of an apatite-inducing proteolipid from human aortic lesions. Arteriosclerosis 4:529a.

    Google Scholar 

  35. Ennever J, Vogel JJ, Riggan LJ (1980) Calcification by proteolipid from atherosclerotic aorta. Atherosclerosis 35:209–213.

    Article  PubMed  CAS  Google Scholar 

  36. Kessler RJ, Vaughn DA (1984) Divalent metal is required for both phosphate transport and phosphate binding to phosphorin, a proteolipid isolated from brush border membrane vesicle. J Biol Chem 259–9059–9063.

    Google Scholar 

  37. Howell DS, Pita JC, Marquez JF, Madruga JE (1968) Partition of calcium phosphate and protein in the fluid phase aspirated at calcifying sites in epiphyseal cartilage. J Clin Invest 47:1121–1132.

    Article  PubMed  CAS  Google Scholar 

  38. Cuervo LA, Pita JC, Howell DS (1973) Inhibition of calcium phosphate mineral growth by proteoglycan aggregate fractions in a synthetic lymph. Calcif Tiss Res 13:1–10.

    Article  CAS  Google Scholar 

  39. Dziewaitkowski DD, Majznerski LL (1985) Role of proteoglycans in endochondral ossification inhibition of calcification. Calcif Tiss Internat 37:460–464.

    Google Scholar 

  40. Hirschman A, Dziewaitkowski DD (1966) Protein-polysaccharide loss during endochondral ossification. Immunochemical evidence. Science 154:393–395.

    Article  PubMed  CAS  Google Scholar 

  41. Price PA, Otsuka AS, Poser JP, Kristaponis J, Raman N (1976) Characterization of a-carboxyglutamic acid-containing protein from bone. Proc Natl Acad Sci USA 73:1447–1451.

    Article  PubMed  CAS  Google Scholar 

  42. Romberg RW, Werness PG, Riggs, BL, Mann KG (1986) Inhibition of hydroxyapatite crystal growth by bone-specific and other calcium-binding proteins. Biochem 25:1176–1180.

    Article  CAS  Google Scholar 

  43. Menanteau J, Neuman WF, Neuman MW (1982) A study of bone proteins which can prevent hydroxyapatite formation. Metal Bone Dis and Rel Res 4:157–162.

    Article  CAS  Google Scholar 

  44. Termine JD, Kleinman HK, Whitson WS, Conn KM, McGarvey ML, Martin GR (1981) Osteonectin a bone specific protein linking mineral to collagen. Cell 26:99–105.

    Article  PubMed  CAS  Google Scholar 

  45. Fleish H, Russell RGG, Straumann F (1966) Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature 212:901–903.

    Article  Google Scholar 

  46. Termine JD, Conn KM (1976) Inhibition of apatite formation by phosphorylated metabolites and macromole-cules. Calcif Tiss Res 22:149–157.

    Article  CAS  Google Scholar 

  47. Glimcher MJ, Hodge AJ, Schmitt FD (1957) Macromolecular aggregation states in relation to mineralization. The collagen-hydroxyapatite system as studied in vitro. Proc Natl Acad Sci USA 43:860–866.

    Article  PubMed  CAS  Google Scholar 

  48. Glimcher MJ (1985) The role of collagen and phosphoproteins in the calcification of bone and other collagenous tissues. In: Rubin RP, Weiss GB, Putney Jr JW (eds) Calcium in Biological Systems. New York: Plenum Press, pp. 607–616.

    Google Scholar 

  49. Dudley HR, Spiro D (1961) The fine structure of bone cells. J Biophys Biochem Cytol 11:627–649.

    Article  PubMed  CAS  Google Scholar 

  50. Staubesand J, Schmiebusch H, Seydewitz V, Steel F (1981) Matrix vesicles in the walls of arteries subjected to load-failure. In: Ascenzi A, Bonucci E, deBernard B (eds) Proc 3rd Intern Conf on Matrix Vesicles. Milano: Wichtig Editore sr1, pp. 249–256.

    Google Scholar 

  51. Ali SY, Evans L (1973) The uptake of [45Ca] calcium ions by matrix vesicles isolated from calcifying cartilage. Biochem J 134:647–650.

    PubMed  CAS  Google Scholar 

  52. Anderson HC, Sajdera SW (1976) Calcification of rachitic cartilage to study matrix vesicle function. Fed Proc 35: 148–153.

    PubMed  CAS  Google Scholar 

  53. Anderson HC, Hsu HHT (1978) A new method to measure 45Ca accumulation by matrix vesicles in slices of rachitic growth plate cartilage. Metab Bone Dis and Rel Res 1:193–198.

    Article  Google Scholar 

  54. Anderson HC, Kanabe S, Vaananen HK et al. (1984) Phosphatases and matrix vesicle calcification. In: Cohn DV, Potts Jr JT, Fujita T (eds) Endocrine Control of Bone and Calcium Metabolism. Amsterdam: Elsevier, pp. 410–413.

    Google Scholar 

  55. Fallon MD, Whyte MP, Tietlebaum SL (1980) Stereospecific inhibition of alkaline-phosphatese by L-tetramisole prevents in vitro cartilage calcification. Lav Invest 43:489–494.

    CAS  Google Scholar 

  56. Hsu HHT, Anderson HC (1977) A simple and defined method to study calcification by isolated matrix vesicles. Effect of ATP and vesicle phosphatase. Biochem Biophys Acta 500:162–172.

    PubMed  CAS  Google Scholar 

  57. Murphree S, Hsu HHT, Anderson, HC (1982) The in vitro formation of crystalline apatite by matrix vesicles isolated from rachitic rat epiphyseal cartilage. Calcif Tiss Internat 34:562–568.

    Google Scholar 

  58. Greenawalt JW, Rossi C, Lehninger AL (1964) Effect of active accumulation of calcium and phosphations on the structure of rat liver mitochondria. J Cell Biol 2321–2338.

    Google Scholar 

  59. Jennings RB, Ganote CE, Reimer KA (1975) Ischemic tissue injury. Am J Pathol 81:179–198.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this paper

Cite this paper

Anderson, H.C., McGregor, D.H., Tanimura, A. (1990). Mechanisms of Calcification in Atherosclerosis. In: Glagov, S., Newman, W.P., Schaffer, S.A. (eds) Pathobiology of the Human Atherosclerotic Plaque. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3326-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3326-8_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7968-6

  • Online ISBN: 978-1-4612-3326-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics