Nature and Importance of Proteoglycans in the Atherosclerotic Plaque

  • G. S. Berenson
  • B. Radhakrishnamurthy
  • S. R. Sinivasan
  • P. Vijayagopal
  • E. R. DalferesJr.
Conference paper


At the initial meeting on “Evolution of the Atherosclerotic Plaque” in 1963, the importance of specific glycosaminoglycans (GAG) (acid mucopolysaccharides) in atherosclerosis was shown (1). These complex sugars were noted to be an integral part of the arterial wall connective tissue matrix that changes with the type of atherosclerotic lesion. Although complex sugars were isolated from aorta about a century ago, it was not until the decade 1950–1960 (2) that characterization of the GAG fractions provided the opportunity to explore a pathobiologic role of these substances. Histochemical studies stimulated interest in complex sugars in atherosclerosis but did not allow their characterization. The considerable information that is now available from a variety of studies indicates that early in the formation of atherosclerotic lesions changes of GAG is part of the vascular connective tissue, followed by extensive lipid deposition and progression of lesions.


Hyaluronic Acid Arterial Wall Chondroitin Sulfate Dermatan Sulfate Fatty Streak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berenson GS, Dalferes Jr ER, Robin R, Strong JP (1964) Mucopolysaccharides and atherosclerosis. In: Jones RJ (ed) Evolution of Atherosclerotic Plaque. Chicago: University of Chicago Press, pp. 139–150.Google Scholar
  2. 2.
    Morner CT (1895) Einige Beobachtungen uber die verbreitung der chondroitin schwefelsaure. Hoppe-Seyler’s 2. Physiol Chem 20:357–364.Google Scholar
  3. 3.
    Malawistra I, Schubert M (1958) Chondromucoprotein: New extraction method and alkaline degradation. J Biol Chem 230:535–544.Google Scholar
  4. 4.
    Sajdera SW, Hascall VC (1969) Proteinpolysaccharide complex from bovine nasal cartilage. Comparison of low and high shear extraction procedures. J Biol Chem 244: 77–87.PubMedGoogle Scholar
  5. 5.
    Berenson GS, Radhakrishnamurthy B, Srinivasan SR, Vijayagopal P, Dalferes Jr ER, Sharma C (1984) Recent advances in molecular pathology: Carbohydrate-protein macromolecules and arterial wall integrity — A role in atherogenesis. Exp Molec Pathol 41:267–287.CrossRefGoogle Scholar
  6. 6.
    Radhakrishnamurthy B, Jeansonne N, Berenson GS (1986) Organization of glycosaminoglycan chains in a chondroitin sulfate-dermatan sulfate proteoglycan from bovine aorta. Biochim Biophys Acta 882:85–96.PubMedGoogle Scholar
  7. 7.
    Wagner WD, Connor JR, Muldoon E (1982) High molecular weight proteoglycans biosynthesized in culture by pigeon aorta. Biochim Biophys Acta 717:132–142.PubMedGoogle Scholar
  8. 8.
    Rowe HA, Wagner WD (1985) Arterial dermatan sulfate-proteoglycan structure in atherosclerosis susceptible pigeons. Arteriosclerosis 5:101–109.PubMedCrossRefGoogle Scholar
  9. 9.
    Radhakrishnamurthy B, Ruiz HA, Berenson GS (1977) Isolation and characterization of proteoglycans from bovine aorta. J Biol Chem 252:4831–4841.PubMedGoogle Scholar
  10. 10.
    Hardingham TE (1979) The role of link protein in the structure of cartilage proteoglycan aggregates. Biochem J 177:237.PubMedGoogle Scholar
  11. 11.
    Vijayagopal P, Radhakrishnamurthy B, Srinivasan SR, Berenson GS (1985) Isolation and characterization of a link protein from bovine aorta proteoglycan aggregate. Biochim Biophys Acta 839:110–118.PubMedGoogle Scholar
  12. 12.
    Gardell S, Baker J, Caterson B, Heinegard D, Roden L (1980) Link protein and a hyaluronic acid-binding region as components of aorta proteoglycan. Biochem Biophys Res Commun 95:1823.PubMedCrossRefGoogle Scholar
  13. 13.
    Kumar V, Berenson GS, Ruiz H, Dalferes Jr ER, Strong JP (1967) Acid mucopolysaccharides of human aorta. Part 2. Variations with atherosclerotic involvement. J Atheroscler Res 7:583–590.PubMedCrossRefGoogle Scholar
  14. 14.
    Radhakrishnamurthy B, Ruiz HA, Dalferes Jr ER, Srinivasan SR, Foster TA, Berenson GS (1982) Studies of arterial wall glycosaminoglycans and collagen during experimental regression of atherosclerotic lesions in cynomolgous monkeys. Lab Invest 47:153–159.PubMedGoogle Scholar
  15. 15.
    Dalferes Jr ER, Radhakrishnamurthy B, Ruiz H, Berenson GS (1987) Composition of nroteoglycans from human atherosclerotic lesions. Exp & Molec Pathol 47:363–376.CrossRefGoogle Scholar
  16. 16.
    Wagner WD, Salisbury BGJ, Rowe HA (1986) A proposed structure of chondroitin 6-sulfate proteoglycan of human normal and adjacent atherosclerotic plaque. Arteriosclerosis 6:407–417.PubMedCrossRefGoogle Scholar
  17. 17.
    Radhakrishnamurthy B, Ruiz H, Dalferes Jr ER, Vesselinovitch D, Wissler RW, Berenson GS (1979) The effect of various dietary regimens and cholestyramine on aortic glycosaminoglycans during regression of atherosclerotic lesions in rhesus monkeys. Atherosclerosis 33:17–28.PubMedCrossRefGoogle Scholar
  18. 18.
    Ross R (1981) Atherosclerosis: A problem of the biology of arterial wall cells and their interactions with blood components. Arteriosclerosis 1:293–311.PubMedCrossRefGoogle Scholar
  19. 19.
    Vijayagopal P, Srinivasan SR, Radhakrishnamurthy B, Berenson GS (1983) Hemostatic properties and serum lipoprotein binding of a heparan sulfate proteoglycan from bovine aorta. Biochim Biophys Acta 758:70–83.PubMedGoogle Scholar
  20. 20.
    Kanaide H, Uranishi T, Nakashima Y, Nakamura M (1982) The anticoagulant effect of chondroitin sulfates isolated from normal and atherosclerotic regions of human aorta. Br J Exp Pathol 63:82–87.PubMedGoogle Scholar
  21. 21.
    Olivecroma T, Bengtsson G, Marklung SE, Lindahl M, Hook M (1977) Heparin-lipoprotein interactions. Fed Proc 36:60–65.Google Scholar
  22. 22.
    Vijayagopal P, Srinivasan SR, Radhakrishnamurthy B, Berenson GS (1981) Interaction of serum lipoprotein and a proteoglycan from bovine aorta. J Biol Chem 256:8234–8241.PubMedGoogle Scholar
  23. 23.
    Kramsch DM, Hollander W (1973) The interactions of serum and arterial lipoproteins with elastin of arterial intima and its role in the lipid accumulation in atherosclerotic plaques. J Clin Invest 52:232–247.CrossRefGoogle Scholar
  24. 24.
    Srinivasan SR, Vijayagopal P, Dalferes Jr ER, Abbate B, Radhakrishnamurthy B, Berenson GS (1984) Dynamics of lipoprotein-glycosaminoglycan interactions in the atherosclerotic rabbit aorta in vivo. Biochim Biophys Acta 793:157–168.PubMedGoogle Scholar
  25. 25.
    Srinivasan SR, Dolan P, Radhakrishnamurthy B, Berenson GS (1972) Isolation of lipoprotein and mucopolysaccharide complexes from fatty streaks of human aortas. Atherosclerosis 16:95–104.PubMedCrossRefGoogle Scholar
  26. 26.
    Srinivasan SR, Yost C, Berenson GS (1982) Lipoprotein-glycosaminoglycan interactions in aortas of rabbits fed atherogenic diets containing different fats. Atherosclerosis 43:289–301.PubMedCrossRefGoogle Scholar
  27. 27.
    Srinivasan SR, Vijayagopal P, Eberle K, Radhakrishnamurthy B, Berenson GS (1986) Differences in low density lipoprotein binding among arterial chondroitin sulfate-dermatan sulfate proteoglycan variants. Arteriosclerosis 6:532a.Google Scholar
  28. 28.
    Iverius PH (1972) The interaction between human plasma lipoproteins and connective tissue glycosaminoglycans. J Biol Chem 247:2607–2613.PubMedGoogle Scholar
  29. 29.
    Brown MS, Kovanen PT, Goldstein JL (1981) Regulation of plasma cholesterol by lipoprotein receptors. Science 212:628–635.PubMedCrossRefGoogle Scholar
  30. 30.
    Brown MS, Goldstein JL (1983) Lipoprotein metabolism in the macrophage: Implications for cholesterol deposition in atherosclerosis. Ann Rev Biochem 52:223–261.PubMedCrossRefGoogle Scholar
  31. 31.
    Fowler SE, Mayer EP, Greenspan P (1985) Foam cells and atherogenesis. Ann NY Acad Sci 454:79–90.PubMedCrossRefGoogle Scholar
  32. 32.
    Vijayagopal P, Srinivasan SR, Jones KM, Radhakrishnamurthy B, Berenson GS (1985) Complexes of low density lipoproteins and arterial wall proteoglycan aggregates promote cholesteryl ester accumulation in mouse macrophages. Biochim Biophys Acta 837:251–261.PubMedGoogle Scholar
  33. 33.
    Salisbury BGJ, Falcone DJ, Minick CR (1985) Insoluble low density lipoprotein-proteoglycan complexes enhance cholesteryl ester accumulation in macrophages. Am J Pathol 120:6–11.PubMedGoogle Scholar
  34. 34.
    Basu SK, Goldstein J, Anderson RGW, Brown MS (1981) Monensin interrupts the recycling of low density lipoprotein receptors in human fibroblasts cell. Cell 24:493–502.PubMedCrossRefGoogle Scholar
  35. 35.
    Blomhoff R, Devon CA, Eskild W, Helgerud P, Norum KR, Berg T (1984) Clearance of acetyl low density lipoprotein by liver endothelial cells: Implications for hepatic cholesterol metabolism. J Biol Chem 259: 8898–8903.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • G. S. Berenson
  • B. Radhakrishnamurthy
  • S. R. Sinivasan
  • P. Vijayagopal
  • E. R. DalferesJr.

There are no affiliations available

Personalised recommendations