Effects of Lithium on Cell Growth

  • Vincent S. Gallicchio


One of the major dominant themes in cell biology is elucidating at the molecular level the mechanisms by which alterations in the external microenvironment influence the proliferation of mammalian cells. It is a well-described phenomenon that a number of agents or conditions markedly influence the rate of cellular proliferation. Hormones, serum or growth factors, when added to cultures of quiescent cells in a short period of time, all can induce a number of metabolic changes leading to the initiation of DNA synthesis and cell division (1–4). These substances are thought to act via their interaction with the cell membrane by the activation of a second signal that is transmitted into the interior of these cells (5–7). In the absence of these factors mammalian cells stop proliferating and enter a phase referred to as the resting phase of Gl/Go, only to assume proliferation when the absent agent is resupplied.


Growth Effect Monovalent Cation Kidney Epithelial Cell Canine Kidney Epithelial Cell High Lithium Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Holley, R.W., & Kiernan, J.A. (1968). “Contact inhibition” of cell division in 3T3 cells. PNAS, USA, 60, 300.CrossRefGoogle Scholar
  2. 2.
    Hershko, A., Mamont, P., Schields, R., Tomkins, G.M. (1971). Nature (London), 232, 206.Google Scholar
  3. 3.
    Temin, H.M., Pierson, R.W., Jr., & Dulak, V.C. (1972). In G.H. Rothblat & V.J. Cristofalo (Eds.), Growth, nutrition and metabolism of cells in culture (pp. 50–81). New York: Academic Press.Google Scholar
  4. 4.
    Rudland, P.S., Seifert, W., & Gospodarowicz, D. (1974). Growth control in cultured mouse fibroblasts: Induction of the pleiotypic and mitogenic responses by a purified growth factor. PNAS, USA, 71, 2600.CrossRefGoogle Scholar
  5. 5.
    Pardee, A.B., Jimenez de Asua, L., & Rosengurt, E. (1974). In B. Clarkson & R. Baserga (Eds.), Control of proliferation in animal cells (pp. 547–561). Cold Spring Harbor, NY: Cold Harbor Laboratory.Google Scholar
  6. 6.
    Rubin, H.A. (1978). Do viruses use calcium ions to shut off host cell functions? Nature (London), 271, 186.CrossRefGoogle Scholar
  7. 7.
    McKeehan, W.L., & Ham, R.G. (1978). Calcium and magnesium ions and the regulation of multiplication in normal and transformed cells. Nature (London), 275, 756.CrossRefGoogle Scholar
  8. 8.
    Sanui, H., & Rubin, H.A. (1978). Membrane bound and cellular cationic changes asociated with insulin stimulation of cultured cells. J. Cell Physiol., 96, 265.PubMedCrossRefGoogle Scholar
  9. 9.
    Dulbecco, R., & Elkington, J. (1975). Induction of growth in resting fibroblastic cell cultures by Ca. J. PNAS, USA, 72, 1584.CrossRefGoogle Scholar
  10. 10.
    Mamont, P.S., Bohlen, T., Milann, P., Bey, F., Schuber, F., & Tardif, C (1976). x-Methyl ornithine, a potent competitive of ornithine decarboxylase, blocks proliferation of rat hepatoma cells in culture. PNAS, USA, 73, 1626.Google Scholar
  11. 11.
    Hori, C., & Oka, T. (1979). Induction of lithium ion on multiplication of mouse mammary epithelium in culture. PNAS, USA, 76, 2823.CrossRefGoogle Scholar
  12. 12.
    Ptashne, K., Stockdale, F., & Conlon, S. (1980). Initiation of DNA synthesis in mammary epithelium and mammary tumors by lithium ions. J. Cell Physiol., 103, 41.PubMedCrossRefGoogle Scholar
  13. 13.
    Hart, D. (1979). Potentiation of phytohemagglutinin stimulation of lymphoid cells by lithium. Exp. Cell Res., 119, 47.PubMedCrossRefGoogle Scholar
  14. 14.
    Pruss, R., & Herschman, H. (1979). Variants of 3T3 cells lacking mitogenic response to epidermal growth factor. PNAS, USA, 74, 3918.CrossRefGoogle Scholar
  15. 15.
    Smith, J., & Rosengurt, E.J. (1978). Lithium transport by fibroblastic mouse cells: Characterization and stimulation by serum and growth factors in quiescent cultures. J. Cell Physiol., 97, 441.PubMedCrossRefGoogle Scholar
  16. 16.
    Rozengurt, E., & Mendoza, S. (1980). Monovalent ion fluxes and the control of cell proliferation in cultured fibroblasts. Ann. NY Acad. Sci., 339, 175.PubMedCrossRefGoogle Scholar
  17. 17.
    Frantz, C., Nathan, D., & Scher, C. (1981). Intracellular univalent cations and the regulation of the BALB lc-3T3 cell cycle. J. Cell Biol., 88, 51.PubMedCrossRefGoogle Scholar
  18. 18.
    Toback, P. (1980). Induction of growth in kidney epithelial cells in culture by Na+. PNAS, USA, 77, 6654.CrossRefGoogle Scholar
  19. 19.
    Clausen, T., Elbrink, J., & Martin, B. (1974). Insulin controlling calcium distribution in muscle and fat cells. Acta Endocrinol 77, suppl., 191, 137.Google Scholar
  20. 20.
    DeMeis, L. (1971). Alosteric inhibition by alkali ions of the Ca2+ uptake and adenosine triphosphatase activity of skeletal muscle microsomes. J. Biol Chem., 246, 4764.Google Scholar
  21. 21.
    Gelfand, E., Dosch, H., Hastings, D., Shore, A. (1979). Lithium: A Modulator of Cyclic AMP Dependent Events in Lymphocytes? Science 203, 365.PubMedCrossRefGoogle Scholar
  22. 22.
    Dousa, T., & Hechter, O. (1970). The effect of NaCl & LiCl on vasopressin-sensitive adenyl cyclase. Life Sci., 9, 765.CrossRefGoogle Scholar
  23. 23.
    Haugaard, E.S., Frazer, A., Mendels, J., & Haugaard, N. (1975). Metabolic and electrolyte changes produced by lithium ions in the isolated rat diaphragm. Biochem. Pharmacol., 24, 1187.PubMedCrossRefGoogle Scholar
  24. 24.
    Mickel, R.A., Hallidy, L., Haugaard, N., & Haugaard, E.S. (1978). Stimulation by lithium ions of the incorporation of [u-14C] glucose into glycogen in rat brain slices. Biochem. Pharmacol., 27, 799.PubMedCrossRefGoogle Scholar
  25. 25.
    Ryback, S.M., & Stockdale, F.E. (1981). Growth effects of lithium chloride in BALB/c-3T3 fibroblasts and Madin-Darby canine kidney epithelial cells. Exper. Cell Res., 136, 263.CrossRefGoogle Scholar
  26. 26.
    Manku, M.S., Horrobin, D.F., & Karmazyn, M. (1979). Prolactin and zinc effects on rat vascular reactivity: Possible relationship to dihomo-γ-linolenic acid and to prostaglandin synthesis. Endocrinology, 104, 114.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Vincent S. Gallicchio

There are no affiliations available

Personalised recommendations