Skip to main content

Effects of Lithium on Cell Growth

  • Chapter
Book cover Lithium and Cell Physiology

Abstract

One of the major dominant themes in cell biology is elucidating at the molecular level the mechanisms by which alterations in the external microenvironment influence the proliferation of mammalian cells. It is a well-described phenomenon that a number of agents or conditions markedly influence the rate of cellular proliferation. Hormones, serum or growth factors, when added to cultures of quiescent cells in a short period of time, all can induce a number of metabolic changes leading to the initiation of DNA synthesis and cell division (1–4). These substances are thought to act via their interaction with the cell membrane by the activation of a second signal that is transmitted into the interior of these cells (5–7). In the absence of these factors mammalian cells stop proliferating and enter a phase referred to as the resting phase of Gl/Go, only to assume proliferation when the absent agent is resupplied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holley, R.W., & Kiernan, J.A. (1968). “Contact inhibition” of cell division in 3T3 cells. PNAS, USA, 60, 300.

    Article  Google Scholar 

  2. Hershko, A., Mamont, P., Schields, R., Tomkins, G.M. (1971). Nature (London), 232, 206.

    CAS  Google Scholar 

  3. Temin, H.M., Pierson, R.W., Jr., & Dulak, V.C. (1972). In G.H. Rothblat & V.J. Cristofalo (Eds.), Growth, nutrition and metabolism of cells in culture (pp. 50–81). New York: Academic Press.

    Google Scholar 

  4. Rudland, P.S., Seifert, W., & Gospodarowicz, D. (1974). Growth control in cultured mouse fibroblasts: Induction of the pleiotypic and mitogenic responses by a purified growth factor. PNAS, USA, 71, 2600.

    Article  CAS  Google Scholar 

  5. Pardee, A.B., Jimenez de Asua, L., & Rosengurt, E. (1974). In B. Clarkson & R. Baserga (Eds.), Control of proliferation in animal cells (pp. 547–561). Cold Spring Harbor, NY: Cold Harbor Laboratory.

    Google Scholar 

  6. Rubin, H.A. (1978). Do viruses use calcium ions to shut off host cell functions? Nature (London), 271, 186.

    Article  CAS  Google Scholar 

  7. McKeehan, W.L., & Ham, R.G. (1978). Calcium and magnesium ions and the regulation of multiplication in normal and transformed cells. Nature (London), 275, 756.

    Article  CAS  Google Scholar 

  8. Sanui, H., & Rubin, H.A. (1978). Membrane bound and cellular cationic changes asociated with insulin stimulation of cultured cells. J. Cell Physiol., 96, 265.

    Article  PubMed  CAS  Google Scholar 

  9. Dulbecco, R., & Elkington, J. (1975). Induction of growth in resting fibroblastic cell cultures by Ca. J. PNAS, USA, 72, 1584.

    Article  CAS  Google Scholar 

  10. Mamont, P.S., Bohlen, T., Milann, P., Bey, F., Schuber, F., & Tardif, C (1976). x-Methyl ornithine, a potent competitive inhibitor.pa of ornithine decarboxylase, blocks proliferation of rat hepatoma cells in culture. PNAS, USA, 73, 1626.

    Google Scholar 

  11. Hori, C., & Oka, T. (1979). Induction of lithium ion on multiplication of mouse mammary epithelium in culture. PNAS, USA, 76, 2823.

    Article  CAS  Google Scholar 

  12. Ptashne, K., Stockdale, F., & Conlon, S. (1980). Initiation of DNA synthesis in mammary epithelium and mammary tumors by lithium ions. J. Cell Physiol., 103, 41.

    Article  PubMed  CAS  Google Scholar 

  13. Hart, D. (1979). Potentiation of phytohemagglutinin stimulation of lymphoid cells by lithium. Exp. Cell Res., 119, 47.

    Article  PubMed  CAS  Google Scholar 

  14. Pruss, R., & Herschman, H. (1979). Variants of 3T3 cells lacking mitogenic response to epidermal growth factor. PNAS, USA, 74, 3918.

    Article  Google Scholar 

  15. Smith, J., & Rosengurt, E.J. (1978). Lithium transport by fibroblastic mouse cells: Characterization and stimulation by serum and growth factors in quiescent cultures. J. Cell Physiol., 97, 441.

    Article  PubMed  CAS  Google Scholar 

  16. Rozengurt, E., & Mendoza, S. (1980). Monovalent ion fluxes and the control of cell proliferation in cultured fibroblasts. Ann. NY Acad. Sci., 339, 175.

    Article  PubMed  CAS  Google Scholar 

  17. Frantz, C., Nathan, D., & Scher, C. (1981). Intracellular univalent cations and the regulation of the BALB lc-3T3 cell cycle. J. Cell Biol., 88, 51.

    Article  PubMed  CAS  Google Scholar 

  18. Toback, P. (1980). Induction of growth in kidney epithelial cells in culture by Na+. PNAS, USA, 77, 6654.

    Article  CAS  Google Scholar 

  19. Clausen, T., Elbrink, J., & Martin, B. (1974). Insulin controlling calcium distribution in muscle and fat cells. Acta Endocrinol 77, suppl., 191, 137.

    CAS  Google Scholar 

  20. DeMeis, L. (1971). Alosteric inhibition by alkali ions of the Ca2+ uptake and adenosine triphosphatase activity of skeletal muscle microsomes. J. Biol Chem., 246, 4764.

    CAS  Google Scholar 

  21. Gelfand, E., Dosch, H., Hastings, D., Shore, A. (1979). Lithium: A Modulator of Cyclic AMP Dependent Events in Lymphocytes? Science 203, 365.

    Article  PubMed  CAS  Google Scholar 

  22. Dousa, T., & Hechter, O. (1970). The effect of NaCl & LiCl on vasopressin-sensitive adenyl cyclase. Life Sci., 9, 765.

    Article  CAS  Google Scholar 

  23. Haugaard, E.S., Frazer, A., Mendels, J., & Haugaard, N. (1975). Metabolic and electrolyte changes produced by lithium ions in the isolated rat diaphragm. Biochem. Pharmacol., 24, 1187.

    Article  PubMed  CAS  Google Scholar 

  24. Mickel, R.A., Hallidy, L., Haugaard, N., & Haugaard, E.S. (1978). Stimulation by lithium ions of the incorporation of [u-14C] glucose into glycogen in rat brain slices. Biochem. Pharmacol., 27, 799.

    Article  PubMed  CAS  Google Scholar 

  25. Ryback, S.M., & Stockdale, F.E. (1981). Growth effects of lithium chloride in BALB/c-3T3 fibroblasts and Madin-Darby canine kidney epithelial cells. Exper. Cell Res., 136, 263.

    Article  Google Scholar 

  26. Manku, M.S., Horrobin, D.F., & Karmazyn, M. (1979). Prolactin and zinc effects on rat vascular reactivity: Possible relationship to dihomo-γ-linolenic acid and to prostaglandin synthesis. Endocrinology, 104, 114.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Gallicchio, V.S. (1990). Effects of Lithium on Cell Growth. In: Bach, R.O., Gallicchio, V.S. (eds) Lithium and Cell Physiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3324-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3324-4_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7967-9

  • Online ISBN: 978-1-4612-3324-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics