Abstract
The discovery of lithium (Li) in 1817 is attributed to J.A. Arfwedson. Bervzelius proposed the name for the element based on the Greek word lithos, meaning stone (2). Lithium is widely distributed in relatively small quantities throughout the earth’s crust. A number of studies have involved the determination of total Li in soils. Steinkoenig (3) sampled soils in the United States and found 10 to 100 ppm Li. Subsequently, Soviet investigators reported lower levels ranging from 10 to 50 ppm Li (4,5,6), while Swaine (7) found wide variation in mineral-rich soils with 8 to 400 ppm Li. However, it is improbable that the total Li in soils is available for uptake by plants. The Li that can be extracted from soils in California ranged from 0.1 to 0.9 ppm (8), while higher levels, 0.4 to 2.5 ppm, were contained in saline Indian soils (9). Insufficient information is available concerning the relationship between Li which can be extracted from the soil, and the quantity of Li absorbed by plants. Aldrich et al. (10) found increases of Li concentrations in lemon leaves with decreasing soil pH in greenhouse studies.
Keywords
Lithium Salt Lithium Toxicity Seance Acad Marginal Necrosis Marginal ReddenPreview
Unable to display preview. Download preview PDF.
References
- 1.McStay, N.G. (1980). Effects of lithium on several plant systems. M.S. Thesis. Department of Botany, North Carolina State University, Raleigh, NC.Google Scholar
- 2.Weeks, M.E. (1956). Discovery of the elements (6th ed.). J. Chem. Educ., Easton, p. 578.Google Scholar
- 3.Steinkoenig, L.A. (1915). Lithium in soil. J. Ind. Eng. Chem., 7,425–426.CrossRefGoogle Scholar
- 4.Ivanov, D.N. (1954). The content of rare alkali elements in soils. Pochvovedenie, pp. 32–45.Google Scholar
- 5.Ivanov, D.N. (1956). Occurrence of lithium, rubidium, and cesium in the products of contemporary erosion and in soils. Kora Vyvetrivaniya, 2,77–84.Google Scholar
- 6.Kvanov, D.N., & Muratova, V.S. (1955). The distribution of lithium in saline soils. Tr. Pochv. Inst. Dokuchaeva Akad. Nauk. SSSR, 44,294–301.Google Scholar
- 7.Swain, D.J. (1955). The trace element content of soils. Tech. Commun. Bur. Soil Sci., 48,1–151.Google Scholar
- 8.Bradford, G.R. (1966). Lithium. In H.D. Chapman (Ed.), Diagnostic criteria for plants and soil (p. 793). University of California.Google Scholar
- 9.Gupta, I.C., Singhla, S.K., & Bharagava, G.P. (1974). Distribution of lithium in some salt affected soil profiles. J. Indian Soc. Soil Sci., 22,88–89.Google Scholar
- 10.Aldrich, D.G., Buchanan, J.R., & Bradford, G.R. (1955). Effects of soil acidification on vegetation growth and leaf composition of lemon trees in pot culture. Soil Sci., 79,427–439.CrossRefGoogle Scholar
- 11.Bach, R.O., Kamienski, C.W., & Ellestad, R.B. (1967). Lithium and lithium compounds. In R.E. Kirk & D.E. Othmer (Eds.). Encyclopedia of chemical technology (2nd ed.), Vol. 12. New York: Interscience Publishers.Google Scholar
- 12.Bradford, G.R. (1963). Lithium survey of California water resources. Soil Sci., 96,77–81.CrossRefGoogle Scholar
- 13.Gupta, I.C. (1972). Note on lithium in saline ground waters. Indian J. Agric. Sci., 42,650–651.Google Scholar
- 14.Smith, H.V., Draper, G.E., & Fuller, W.H. (1964). The quality of Arizona irrigation waters. Ariz. Agric. Exp. Stn. Rep., 2234,1–96.Google Scholar
- 15.Foche, W.O. (1872). Occurrence of lithium in the plant kingdom. Abh. Naturwiss. Ver. Bremen, 3,210–215.Google Scholar
- 16.Focke, W.O. (1878). New observations on lithium in the plant kingdom. Abh. Naturwiss. Ver. Bremen, 5,451–452.Google Scholar
- 17.Robinson, W.O., Steinkoenig, L.A., & Miller, C.F. (1917). The relation of some of the rarer elements in soils and plants. U.S. Dept. Agr. Bull., 600,1–25.Google Scholar
- 18.Tschermak, E. (1899). The distribution of lithium in plants. Z. Landwirtsch. Versuchswes. Dtsch. Oesterr., 2,560–571.Google Scholar
- 19.Bertrand, D. (1943). The distribution of lithium in plants. C.R. Hebd. Seances Acad. Sci., 217,707–708.Google Scholar
- 20.Bertrand, D. (1952). The distribution of lithium in phanerogams. C.R. Hebd. Seances Acad. Sci., 234,2102–2104.Google Scholar
- 21.Bertrand, D. (1959). Lithium content of seed. C.R. Hebd. Seances Acad. Sci., 249,331–332.PubMedGoogle Scholar
- 22.Bertrand, D. (1959). New investigations on the distribution of lithium in phanerogams. C.R. Hebd. Seances Acad. Sci., 249,787–788.Google Scholar
- 23.Bertrand, D. (1959). The influence of altitude on the lithium content of phanerogams plants. C.R. Hebd. Seances Acad. Sci., 249,844–845.Google Scholar
- 24.Collander, R. (1941). Selective absorption of cations by higher plants. Plant Physiol., 16,691–120.PubMedCrossRefGoogle Scholar
- 25.Yamagata, N., & Takahashi, K. (1951). Absorption of rare alkali metals by plants. Nippon Kagaku Zasshi., 72,944–947.CrossRefGoogle Scholar
- 26.Ezdakova, L.A. (1964). Lithium in plants. Bot Zh. (Leningrad), 49,1798–1800.Google Scholar
- 27.Romney, E.M., Wallace, A., Kinnear, J., & Alexander, G.V. (1977). Frequency distribution of lithium in leaves of Lycium andersonii. Commun. Soil Sci. Plant Anal., 8,799–802.CrossRefGoogle Scholar
- 28.Wallace, A., Romney, E.M., Cha, J.W., & Alexander, G.V. (1974). Sodium relations in desert plants. III. Cation-anion relationships in three species which accumulate high levels of cations in leaves. Soil Sci., 118,391–400.CrossRefGoogle Scholar
- 29.Wallace, A., Romney, E.M., & Hale, V.Q. (1973). Sodium relations in desert plants. I. Cation contents of some plant species from the Mojave and Great Basin deserts. Soil Sci., 115,284–287.CrossRefGoogle Scholar
- 30.Cannon, H.L. (1971). The use of plant indicators in ground water surveys, geologic mapping, and mineral prospecting. Taxon, 20,221–256.CrossRefGoogle Scholar
- 31.Aldrich, D.G., Vanselow, A.P., & Bradford, G.R. (1974). Lithium toxicity in citrus. Soil Sci., 77,291–295.Google Scholar
- 32.Hilgeman, R.H., Fuller, W.H., True, L.F., Sharpies, G.C., & Smith, P.F. (1970). Lithium toxicity in ‘Marsh’ grapefruit in Arizona. J. Am. Soc. Hon. Sci., 95,248–251.Google Scholar
- 33.United States Environ. Prot. Agency, Office of Pesticides and Toxic Substances, TSCA Chemical Assessment Series, Chemical Hazard Information Profiles, August 1976-August 1978 (1980), 1–289.Google Scholar
- 34.Nobbe, F., Schroeder, J., & Erdmann, R. (1871). On the action of potassium in vegetation. Landwirtsch. Vers. Stn., 13,321–423.Google Scholar
- 35.Gaunersdorfer, J. (1887). Plant suppression by specific poisoning with lithium salts. Landwirtsch. Vers. Stn., 34,171–206.Google Scholar
- 36.Voelcker, J.A. (1900). The Woburn Pot-Culture Station. A. The Hills’ experiments. J.R. Agric. Soc. Engl., 61,553–591.Google Scholar
- 37.Voelcker, J.A. (1901). The Woburn Pot-Culture Experiments. I. Pot-culture experiments of 1900. J.R. Agric. Soc. Engl., 62,317–334.Google Scholar
- 38.Voelcker, J.A. (1902). The Woburn Experimental Station of the Royal Agricultural Society of England. III. Field experiments, 1901. J.R. Agric. Soc. Engl., 65,346–361.Google Scholar
- 39.Voelcker, J.A. (1904). The Woburn Experimental Station of the Royal Agricultural Society of England. II. Pot culture experiments, 1903. J.R. Agric. Soc. Engl., 65,306–315.Google Scholar
- 40.Voelcker, J.A. (1910). The Woburn Experimental Station of the Royal Agricultural Society of England. Pot culture experiments of 1909. J.R. Agric. Soc. Engl., 71,314–325.Google Scholar
- 41.Voelcker, J.A. (1912). Pot culture experiments, 1910–11–12. I. Hills’ experiments. J.R. Agric. Soc. Engl., 73,314–325.Google Scholar
- 42.Voelcker, J.A. (1913). The Woburn Experimental Station of the Royal Agricultural Society of England. Pot culture experiments, 1913.I. Hills’ experiments. J.R. Agric. Soc. Engl., 74,411–422.Google Scholar
- 43.Ravenna, C., & Maugini, A. (1912). The behavior of plants toward lithium salts. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend., 21,292–298.Google Scholar
- 44.Ravenna, C., & Zamorani, M. (1909). The behavior of plants toward lithium salts. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend., 18,626–630.Google Scholar
- 45.Petri, L. (1910). Observations on the deleterious effects of toxic substances on the olive tree. Zentralbl. Bacteriol. Parasitenkd. Infectionskr. Hyg. Abt. 2 Naturwiss. Allg. Landwirtsch. Tech. Microbiol., 28,153–159.Google Scholar
- 46.Hahn, P.D. (1912). Can lithia be a constituent of plant food? S. Afr. J. Sci., 72,227–229.Google Scholar
- 47.Brenchley, W.E. (1832). The action on the growth of crops on small percentages of certain metallic compounds when applied with ordinary fertilizers. J. Agric. Sci., 22,704–735.CrossRefGoogle Scholar
- 48.Eisenmenger, W.S., & Kucinski, K.J. (1940). Minerals in nutrition. II. The absorption by food plants of certain chemical elements important in human physiology and nutrition. Mass. Agric. Exp. Stn. Res. Bull, 374,12–15.Google Scholar
- 49.Frerking, H. (1915). The poisonous effect of lithium salts on plants. Flora (Jena, 1818–1965), 108,449–453.Google Scholar
- 50.Haas, A.R.C. (1929). Mottle-leaf in citrus artificially induced by lithium. Bot. Gaz., 87,630–641.CrossRefGoogle Scholar
- 51.Epstein, E. (1960). Calcium-lithium competition in absorption by plant roots. Nature (London), 785,705–706.CrossRefGoogle Scholar
- 52.Scharrer, K., & Schropp, W. (1933). Sand and water culture with lithium and rubidium especially regarding their eventual replacement of potassium. Ernaehr. Pflanze., 29,413–425.Google Scholar
- 53.Scharrer, K. (1937). The action of ions of the alkali group on the growth of plants, especially the simultaneous influence of potassium and sodium ions. Forschungs-dienst, 6,180–187.Google Scholar
- 54.Kabanov, V.V., & Myasoedov, N.A. (1974). Toxicity of alkaline cations for tomato plants. Fiziol. Rast. (Moscow), 21,391–397.Google Scholar
- 55.Bingham, F.T., Bradford, G.R., & Page, A.L. (1964). Toxicity of lithium. Calif. Agric, 18,6–7.Google Scholar
- 56.Bingham, F.T., Page, A.L., & Bradford, G.R. (1964). Tolerance of plants to lithium. Soil Sci., 98,4–8.CrossRefGoogle Scholar
- 57.Gupta, I.C. (1974). Lithium tolerance of wheat, barley, rice and gram at germination and seedling stage. Indian J. Agric. Res., 8,103–107.Google Scholar
- 58.Rankin, W.H. (1917). The penetration of foreign substances into trees. Phytopathology, 7,5–13.Google Scholar
- 59.Rumbold, C. (1920). Giving medicine to trees. Am. For., 26,359–362.Google Scholar
- 60.Pirschle, K. (1934). Research on the physiological effect of the elements, as shown by growth experiments with Aspergillus niger (stimulation and toxicity). Planta., 25,177–224.CrossRefGoogle Scholar
- 61.Darby, J.F., & Westgatge, P.J. (1958). Lithium as a fungicide on celery. Proc. Fla. State Hort. Soc., 77,59–62.Google Scholar
- 62.Kent, N.L. (1941). The influence of lithium salts on certain cultivated plants and their parasitic diseases. Ann. Appl. Biol., 28,189–209.CrossRefGoogle Scholar
- 63.Vidali, A. (1951). Field experiments with lithium carbonate for control of tobacco mildew. Not. Mal. Piante, 76,35–39.Google Scholar
- 64.Wortley, W.R.S. (1936). Report of research, 1934–6. The effect of salts of lithium on the resistance of certain plants to disease. J.R. Agric. Soc. Engl., 97,492–498.Google Scholar
- 65.Takamatsu, S., Ishizaki, H., & Kunoh, H. (1979). Cytological studies of early stages of powdery mildew in barley and wheat. VI. Antagonistic effects of calcium and lithium on the infection of coleoptiles of barley by Erysiphe graminis hordei. Can. J. Bot., 57,408–412.CrossRefGoogle Scholar
- 66.Wallace, A., Romney, E.M., & Kinnear, J. (1977). Frequency distribution of several trace metals in 72 corn plants grown together in contaminated soil in the greenhouse. Commu. Soil Sci. Plant Anal., 8,693–691.CrossRefGoogle Scholar
- 67.Wallace, A., & Romney, E.M. (1977). Synergistic trace metal effects in plants. Commun. Soil Sci. Plant Anal., 5,773–780.CrossRefGoogle Scholar
- 68.Wallace, A., Romney, E.M., Cha, J.W., & Chaudry, F.W. (1977). Lithium toxicity in plants. Commun. Soil Sci. Plant Anal., 8,773–780.CrossRefGoogle Scholar
- 69.Anderson, C.E. (1989). Unpublished data.Google Scholar
- 70.Wallace, A. (1979). Excess trace metal effects on calcium distribution in plants. Commun. Soil Sci. Plant Anal., 10,413–419.CrossRefGoogle Scholar
- 71.Einor, L.O., & Dzyubak, O.I. (1966). Effect of inorganic salts and organic solvents on the activity of the Hill’s reaction with pea chloroplasts. Ukr. Bot. Zh., 23,3–10.Google Scholar
- 72.El-Sheikh, A.M., Ulrich, A., & Boyer, T.C. (1971). Effects of lithium on growth, salt absorption, and chemical composition of sugar beet plants. Agron. J., 63,755–758.CrossRefGoogle Scholar
- 73.Sneva, F.A. (1979). Lithium toxicity in seedlings of three cool season grasses. Plant Soil, 53,219–224.CrossRefGoogle Scholar
- 74.Rehab, R.I., & Wallace, A. (1978). Excess trace metal effects on cotton. IV. Chromium and lithium in Yolo loam soil. Commun. Soil Sci. Plant Anal, 9,645–651.CrossRefGoogle Scholar
- 75.Rehab, F.I., & Wallace, A. (1978). Excess trace metal effects on cotton. III. Chromium and lithium in solution. Commun. Soil Sci. Plant Anal., 9,637–644.CrossRefGoogle Scholar
- 76.Edwards, J.K. (1941). Cytological studies of toxicity in meristem cells of roots of Zea mays. II. The effects of lithium chloride. Proc. S.D. Acad. Sci., 21,65–61.Google Scholar
- 77.Furuta, T., Martin, W.C., & Perry, F. (1963). Lithium toxicity as a cause of leaf scorch on Easter lily. Proc. Am. Soc. Hort. Sci., 83,803–807.Google Scholar
- 78.Wallihan, E.F., Sharpless, R.G., & Printy, W.L. (1978). Cumulative toxic effects of boron, lithium, and sodium on water used for hydroponic production of tomatoes. J. Am. Soc. Hort. Sci., 103,14–16.Google Scholar
- 79.Nakamura, N. (1904). Can lithium and cesium salts exert any stimulant action on phanerogams? Bull. Coll. Agric. Tokyo Imp. Univ., 6,153–157.Google Scholar
- 80.Hance, F.E. (1933). Chemistry. Hawaiian Sugar Planters’ Assoc. Proc. of 53rd Annual Meeting, pp. 46–55.Google Scholar
- 81.Puccini, G. (1957). Stimulation action of lithium salts on the flower production of the perpetual carnation of the Riveria. Ann. Sper. Agrar., 11,41–63.Google Scholar
- 82.Okhrimenko, M.J., & Kuz’menko, L.M. (1975). The effect of lithium compounds and their importance in plants. In P. A. Vlasyuk (Ed.), Fertilizers and preparations containing trace elements (p. 200). Naukova Dumka. Kiev.Google Scholar
- 83.Vlasyuk, P.A., Okhrimenko, M.F., Sivak, L.A., & Kuz’menko, L.M. (1978). The effect of carboammophoska enriched in lithium on carbohydrate metabolism and productivity of potato. Agrokhimya., 7,75–80.Google Scholar
- 84.McStay, N.G., Rodgers, H.H., & Anderson, C.E. (1980). Effects of lithium on Phaseolus vulgaris L. Sci. of the Total Environ., 16,185–191.CrossRefGoogle Scholar
- 85.Kent, N.L. (1941). Absorption, translocation, and ultimate fate of lithium in the wheat plant. New Phytol., 40,291–298.CrossRefGoogle Scholar
- 86.Birch-Hirschfeld, L. (1920). Investigation of the speed of diffusion of soluble dissolved substances in plants. Jahrb. Wiss. Bot., 59,170–262.Google Scholar
- 87.Hinz, U., & Fischer, H. (1976). Transport of lithium and cesium along the stolons of Saxifraga sarmentosa L.Z. Pflanzenphysiol., 78,283–292.Google Scholar
- 88.Jacobson, L., Moore, D.P., & Hannapel, R.J. (1960). Role of calcium in absorption on monovalent cations. Plant Physiol., 35,352–351.PubMedCrossRefGoogle Scholar
- 89.Laties, G.G. (1959). The development and control of coexisting respiratory systems in slices of chicory root. Arch. Biochem. Biophys., 79,378–391.CrossRefGoogle Scholar
- 90.Kandeler, R. (1970). The effect of lithium and ADP on the phytochrome regulation of flowering. Planta., 90,203–207.CrossRefGoogle Scholar
- 91.Englemann, W. (1972). Lithium slows down the Kalanchoe clock, Z. Naturforsch. B: Anorg. Chem. Org. Chem. Biochem. Biophys. Biol., 27,477–478.Google Scholar
- 92.Englemann, W. (1973). A slowing down of circadian rhythms by lithium ions. Z. Naturforsch. C: Biochem. Biophys. Biol. Virol., 28,733–736.Google Scholar
- 93.Desbiez, M.O., & Thellier, M. (1975). Lithium inhibition of the mechanically induced precedence between cotyledonary buds. Plant Sci. Lett., 4,315–321.CrossRefGoogle Scholar
- 94.Desbiez, M.O., & Thellier, M. (1977). Induced precedence between cotyledonary buds: Ionic or ouabain treatments and memorization effects. In M. Thellier, et al. (Eds.), Transmembrane Ion Exchange in Plants, (p. 607). CNRS. Paris.Google Scholar
- 95.Desbiez, M.O., & Thellier, M. (1978). Ionic control of the occurrence of a biological rhythm for precedence between axillary buds. Physiol. Veg., 16,785–798.Google Scholar
- 96.Boyer, N., Chapelle, G., & Gaspar, T. (1979). Lithium inhibition of the thigmomor-phogenetic response in Bryonia dioica. Plant Physiol., 63,1215–1216.PubMedCrossRefGoogle Scholar
- 97.Louguet, P., & Thellier, M. (1976). The influence of lithium on the degree of opening and speed of opening and closing of stomata in Pelargonium hortorum. C.R. Hebd. Seances Acad. Sci. Ser. D., 282,2171–2174.Google Scholar
- 98.Carlier, G., & Thellier, M. (1979). Lithium-perturbation of the induction of a methyl-glucose transport during aging of foliar disks of Pelargonium zonale (L.) aiton. Physiol. Veg., 17,13–26.Google Scholar
- 99.Vlasyuk, P.A., & Okhrimenko, M.F. (1969). Effect of lithium on the photochemical activity of chloroplasts of tomato and pepper. Dopov. Akad. Nauk. Ukr. RSR. Ser. B: Geol: Geofiz. Khim. Biol., 31,353–356.Google Scholar
- 100.Vlasyuk, P.A., Okhrimenko, M.F., & Uyazdovskaya, O.S. (1968). The effect of lithium on the photochemical activity of chloroplasts in potato leaves. Dokl. Vses. Akad. Skh. Nauk. im. V.I. Lenina., 11,5–7.Google Scholar
- 101.Ezdakova, L.A. (1962). Effect of lithium top-dressing on photosynthesis and respiration in tobacco leaves. Naukn. Dokl. Vyssh. Shk. Biol. Nauki., 2,137–142.Google Scholar
- 102.Vlasyuk, P.A., Okhrimenko, M.F., & Kuz’menko, L.M. (1973). Effects of lithium on the content and composition of organic acids in plants of the Solanaceae family. Fiziol. Biokhim. Kul’t. Rast., 5,121–124.Google Scholar
- 103.Vlasyuk, P.A., Okhrimenko, M.F., & Sivak, L.A. (1976). Effect of lithium on activity of phosphorylase in tomato and potato plants. Fiziol. Biokhim. Kul’t. Rast., 8,493–496.Google Scholar
- 104.Neskovic, B.A. (1976). New information on the biological effect of lithium. Period. Biol., 78,148–152.Google Scholar
- 105.Vlasyuk, P.A., Kuz’menko, L.M., & Okhrimenko, M.F. (1979). The role of lithium in protein-nucleic acid metabolism in plants. Fiziol. Biokhim. Kul’t. Rast., 11,438–447.Google Scholar
- 106.Hassan, M.N. (1954). The effect of single salt solutions on the histogenesis of radish seedlings. Alexandria J. Agric. Res., 2,20–27.Google Scholar
- 107.Powell, J.T., & Richards, E.G. (1972). Specific effects of lithium on stacking equilibria in polynucleotides. Acta Biochim. Biophys. Acad. Sci. Hung., 281, 145–151.Google Scholar
- 108.Vlasyuk, P.A., Okhrimenko, M.F., Kuz’menko, L.M., & Sivak, L.A. (1978). Effect of lithium on formation of amino-acyl-tRNA. Fiziol. Biokhim. Kul’t. Rast., 10, 297–301.Google Scholar
- 109.Vlasyuk, P. A., & Kuz’menko, L.M. (1975). Metabolic activity of potato plant ribo-somes in dependence on their supply with lithium. Fiziol. Biokhim. Kul’t. Rast., 7,563–568.Google Scholar
- 110.Vlasyuk, P.A., Kuz’menko, L.M., & Okhrimenko, M.F. (1975). Content and fractional composition of potato protein and nucleic acids under lithium effect. Dopov. Akad. Nauk. Ukr. RSR. Ser. B: Geol. Geofiz. Khim. Biol., pp. 742–748.Google Scholar
- 111.Vlasyuk, P.A., Okhrimenko, M.F., & Kuz’menko, L.M. (1975). Fractional and amino acidic compositions of proteins and content of free amino acids in potato under the influence of lithium. Fiziol Biokhim. Kul’t. Rast., 7,115–120.Google Scholar
- 112.Bhattacharyya, B., & Wolff, J. (1976). Stabilization of microtubules by lithium ion. Biochem. Biophys. Res. Commun., 75,383–390.CrossRefGoogle Scholar
- 113.Johnson, F.N. (Ed.). (1975). Lithium research and therapy (p. 569). New York: Academic Press.Google Scholar
- 114.Bello, J., Haas, D., & Bello, H.R. (1966). Interactions of protein-denaturing salts with model amides. Biochemistry, 5,2539–2548.PubMedCrossRefGoogle Scholar
- 115.Armbruster, A.M., & Pullman, A. (1974). The effect of cation binding on the rotation barrier of the peptide bond. FEBS Lett., 49,18–21.PubMedCrossRefGoogle Scholar
- 116.Williams, R.J.T. (1973). The chemistry and biochemistry of lithium. In S. Geershon & B. Shopsin (Eds.), Lithium. Its role in psychiatric research and treatment (p. 358). New York: Plenum Press.Google Scholar
- 117.Stracher, A. (1960). Deuterium exchanges or ribonuclease and oxidized ribonuclease in strong salt solutions. C.R. Trav. Lab. Carlsberg, 30,468–481.Google Scholar
- 118.Evans, H.J., & Sorger, G.J. (1966). Role of mineral elements with emphasis on univalent cations. Annu. Rev. Plant Physiol., 17,47–76.CrossRefGoogle Scholar
- 119.Kergosien, Y., Thellier, M., & Desbiez, M.O. (1979). Precedence between axillary buds in Bidens pilosus L. Modeling at the macroscopic level in terms of catastrophes or at the microscopic level in terms of a cellular “pump and leak”. In P. Delattre & M. Thellier (Eds.), Elaboration and Justification of Models (p. 343). Paris: Malione.Google Scholar
- 120.Thellier, M., Desbiez, M.O. (1977). Model of a switching “on” and “off” pump and leak, as a relay and amplification mechanism in the control of morphogenesis. In E. Marre & O. Ciferri (Eds.), Regulation of cell membrane activities in plants (p. 332). Amsterdam: Elsevier. North-Holland Biomedical Press.Google Scholar
- 121.Thellier, M., Thoiron, B., Thoiron, A., Le Guiel, J., & Luttge, U. (1980). Effects of lithium and potassium on recovery of solute uptake capacity of Acer pseudoplatanus cells after gas shock. Physiol. Plant., 49,93–99.CrossRefGoogle Scholar
- 122.Heagle, A.S., Body, D.E., & Heck, W.W. (1973). An open top field chamber to assess the impact of air pollution. J. Environ. Qual., 2,365–368.CrossRefGoogle Scholar