Lithium in Plants

  • Charles E. Anderson


The discovery of lithium (Li) in 1817 is attributed to J.A. Arfwedson. Bervzelius proposed the name for the element based on the Greek word lithos, meaning stone (2). Lithium is widely distributed in relatively small quantities throughout the earth’s crust. A number of studies have involved the determination of total Li in soils. Steinkoenig (3) sampled soils in the United States and found 10 to 100 ppm Li. Subsequently, Soviet investigators reported lower levels ranging from 10 to 50 ppm Li (4,5,6), while Swaine (7) found wide variation in mineral-rich soils with 8 to 400 ppm Li. However, it is improbable that the total Li in soils is available for uptake by plants. The Li that can be extracted from soils in California ranged from 0.1 to 0.9 ppm (8), while higher levels, 0.4 to 2.5 ppm, were contained in saline Indian soils (9). Insufficient information is available concerning the relationship between Li which can be extracted from the soil, and the quantity of Li absorbed by plants. Aldrich et al. (10) found increases of Li concentrations in lemon leaves with decreasing soil pH in greenhouse studies.


Lithium Salt Lithium Toxicity Seance Acad Marginal Necrosis Marginal Redden 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McStay, N.G. (1980). Effects of lithium on several plant systems. M.S. Thesis. Department of Botany, North Carolina State University, Raleigh, NC.Google Scholar
  2. 2.
    Weeks, M.E. (1956). Discovery of the elements (6th ed.). J. Chem. Educ., Easton, p. 578.Google Scholar
  3. 3.
    Steinkoenig, L.A. (1915). Lithium in soil. J. Ind. Eng. Chem., 7,425–426.CrossRefGoogle Scholar
  4. 4.
    Ivanov, D.N. (1954). The content of rare alkali elements in soils. Pochvovedenie, pp. 32–45.Google Scholar
  5. 5.
    Ivanov, D.N. (1956). Occurrence of lithium, rubidium, and cesium in the products of contemporary erosion and in soils. Kora Vyvetrivaniya, 2,77–84.Google Scholar
  6. 6.
    Kvanov, D.N., & Muratova, V.S. (1955). The distribution of lithium in saline soils. Tr. Pochv. Inst. Dokuchaeva Akad. Nauk. SSSR, 44,294–301.Google Scholar
  7. 7.
    Swain, D.J. (1955). The trace element content of soils. Tech. Commun. Bur. Soil Sci., 48,1–151.Google Scholar
  8. 8.
    Bradford, G.R. (1966). Lithium. In H.D. Chapman (Ed.), Diagnostic criteria for plants and soil (p. 793). University of California.Google Scholar
  9. 9.
    Gupta, I.C., Singhla, S.K., & Bharagava, G.P. (1974). Distribution of lithium in some salt affected soil profiles. J. Indian Soc. Soil Sci., 22,88–89.Google Scholar
  10. 10.
    Aldrich, D.G., Buchanan, J.R., & Bradford, G.R. (1955). Effects of soil acidification on vegetation growth and leaf composition of lemon trees in pot culture. Soil Sci., 79,427–439.CrossRefGoogle Scholar
  11. 11.
    Bach, R.O., Kamienski, C.W., & Ellestad, R.B. (1967). Lithium and lithium compounds. In R.E. Kirk & D.E. Othmer (Eds.). Encyclopedia of chemical technology (2nd ed.), Vol. 12. New York: Interscience Publishers.Google Scholar
  12. 12.
    Bradford, G.R. (1963). Lithium survey of California water resources. Soil Sci., 96,77–81.CrossRefGoogle Scholar
  13. 13.
    Gupta, I.C. (1972). Note on lithium in saline ground waters. Indian J. Agric. Sci., 42,650–651.Google Scholar
  14. 14.
    Smith, H.V., Draper, G.E., & Fuller, W.H. (1964). The quality of Arizona irrigation waters. Ariz. Agric. Exp. Stn. Rep., 2234,1–96.Google Scholar
  15. 15.
    Foche, W.O. (1872). Occurrence of lithium in the plant kingdom. Abh. Naturwiss. Ver. Bremen, 3,210–215.Google Scholar
  16. 16.
    Focke, W.O. (1878). New observations on lithium in the plant kingdom. Abh. Naturwiss. Ver. Bremen, 5,451–452.Google Scholar
  17. 17.
    Robinson, W.O., Steinkoenig, L.A., & Miller, C.F. (1917). The relation of some of the rarer elements in soils and plants. U.S. Dept. Agr. Bull., 600,1–25.Google Scholar
  18. 18.
    Tschermak, E. (1899). The distribution of lithium in plants. Z. Landwirtsch. Versuchswes. Dtsch. Oesterr., 2,560–571.Google Scholar
  19. 19.
    Bertrand, D. (1943). The distribution of lithium in plants. C.R. Hebd. Seances Acad. Sci., 217,707–708.Google Scholar
  20. 20.
    Bertrand, D. (1952). The distribution of lithium in phanerogams. C.R. Hebd. Seances Acad. Sci., 234,2102–2104.Google Scholar
  21. 21.
    Bertrand, D. (1959). Lithium content of seed. C.R. Hebd. Seances Acad. Sci., 249,331–332.PubMedGoogle Scholar
  22. 22.
    Bertrand, D. (1959). New investigations on the distribution of lithium in phanerogams. C.R. Hebd. Seances Acad. Sci., 249,787–788.Google Scholar
  23. 23.
    Bertrand, D. (1959). The influence of altitude on the lithium content of phanerogams plants. C.R. Hebd. Seances Acad. Sci., 249,844–845.Google Scholar
  24. 24.
    Collander, R. (1941). Selective absorption of cations by higher plants. Plant Physiol., 16,691–120.PubMedCrossRefGoogle Scholar
  25. 25.
    Yamagata, N., & Takahashi, K. (1951). Absorption of rare alkali metals by plants. Nippon Kagaku Zasshi., 72,944–947.CrossRefGoogle Scholar
  26. 26.
    Ezdakova, L.A. (1964). Lithium in plants. Bot Zh. (Leningrad), 49,1798–1800.Google Scholar
  27. 27.
    Romney, E.M., Wallace, A., Kinnear, J., & Alexander, G.V. (1977). Frequency distribution of lithium in leaves of Lycium andersonii. Commun. Soil Sci. Plant Anal., 8,799–802.CrossRefGoogle Scholar
  28. 28.
    Wallace, A., Romney, E.M., Cha, J.W., & Alexander, G.V. (1974). Sodium relations in desert plants. III. Cation-anion relationships in three species which accumulate high levels of cations in leaves. Soil Sci., 118,391–400.CrossRefGoogle Scholar
  29. 29.
    Wallace, A., Romney, E.M., & Hale, V.Q. (1973). Sodium relations in desert plants. I. Cation contents of some plant species from the Mojave and Great Basin deserts. Soil Sci., 115,284–287.CrossRefGoogle Scholar
  30. 30.
    Cannon, H.L. (1971). The use of plant indicators in ground water surveys, geologic mapping, and mineral prospecting. Taxon, 20,221–256.CrossRefGoogle Scholar
  31. 31.
    Aldrich, D.G., Vanselow, A.P., & Bradford, G.R. (1974). Lithium toxicity in citrus. Soil Sci., 77,291–295.Google Scholar
  32. 32.
    Hilgeman, R.H., Fuller, W.H., True, L.F., Sharpies, G.C., & Smith, P.F. (1970). Lithium toxicity in ‘Marsh’ grapefruit in Arizona. J. Am. Soc. Hon. Sci., 95,248–251.Google Scholar
  33. 33.
    United States Environ. Prot. Agency, Office of Pesticides and Toxic Substances, TSCA Chemical Assessment Series, Chemical Hazard Information Profiles, August 1976-August 1978 (1980), 1–289.Google Scholar
  34. 34.
    Nobbe, F., Schroeder, J., & Erdmann, R. (1871). On the action of potassium in vegetation. Landwirtsch. Vers. Stn., 13,321–423.Google Scholar
  35. 35.
    Gaunersdorfer, J. (1887). Plant suppression by specific poisoning with lithium salts. Landwirtsch. Vers. Stn., 34,171–206.Google Scholar
  36. 36.
    Voelcker, J.A. (1900). The Woburn Pot-Culture Station. A. The Hills’ experiments. J.R. Agric. Soc. Engl., 61,553–591.Google Scholar
  37. 37.
    Voelcker, J.A. (1901). The Woburn Pot-Culture Experiments. I. Pot-culture experiments of 1900. J.R. Agric. Soc. Engl., 62,317–334.Google Scholar
  38. 38.
    Voelcker, J.A. (1902). The Woburn Experimental Station of the Royal Agricultural Society of England. III. Field experiments, 1901. J.R. Agric. Soc. Engl., 65,346–361.Google Scholar
  39. 39.
    Voelcker, J.A. (1904). The Woburn Experimental Station of the Royal Agricultural Society of England. II. Pot culture experiments, 1903. J.R. Agric. Soc. Engl., 65,306–315.Google Scholar
  40. 40.
    Voelcker, J.A. (1910). The Woburn Experimental Station of the Royal Agricultural Society of England. Pot culture experiments of 1909. J.R. Agric. Soc. Engl., 71,314–325.Google Scholar
  41. 41.
    Voelcker, J.A. (1912). Pot culture experiments, 1910–11–12. I. Hills’ experiments. J.R. Agric. Soc. Engl., 73,314–325.Google Scholar
  42. 42.
    Voelcker, J.A. (1913). The Woburn Experimental Station of the Royal Agricultural Society of England. Pot culture experiments, 1913.I. Hills’ experiments. J.R. Agric. Soc. Engl., 74,411–422.Google Scholar
  43. 43.
    Ravenna, C., & Maugini, A. (1912). The behavior of plants toward lithium salts. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend., 21,292–298.Google Scholar
  44. 44.
    Ravenna, C., & Zamorani, M. (1909). The behavior of plants toward lithium salts. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend., 18,626–630.Google Scholar
  45. 45.
    Petri, L. (1910). Observations on the deleterious effects of toxic substances on the olive tree. Zentralbl. Bacteriol. Parasitenkd. Infectionskr. Hyg. Abt. 2 Naturwiss. Allg. Landwirtsch. Tech. Microbiol., 28,153–159.Google Scholar
  46. 46.
    Hahn, P.D. (1912). Can lithia be a constituent of plant food? S. Afr. J. Sci., 72,227–229.Google Scholar
  47. 47.
    Brenchley, W.E. (1832). The action on the growth of crops on small percentages of certain metallic compounds when applied with ordinary fertilizers. J. Agric. Sci., 22,704–735.CrossRefGoogle Scholar
  48. 48.
    Eisenmenger, W.S., & Kucinski, K.J. (1940). Minerals in nutrition. II. The absorption by food plants of certain chemical elements important in human physiology and nutrition. Mass. Agric. Exp. Stn. Res. Bull, 374,12–15.Google Scholar
  49. 49.
    Frerking, H. (1915). The poisonous effect of lithium salts on plants. Flora (Jena, 1818–1965), 108,449–453.Google Scholar
  50. 50.
    Haas, A.R.C. (1929). Mottle-leaf in citrus artificially induced by lithium. Bot. Gaz., 87,630–641.CrossRefGoogle Scholar
  51. 51.
    Epstein, E. (1960). Calcium-lithium competition in absorption by plant roots. Nature (London), 785,705–706.CrossRefGoogle Scholar
  52. 52.
    Scharrer, K., & Schropp, W. (1933). Sand and water culture with lithium and rubidium especially regarding their eventual replacement of potassium. Ernaehr. Pflanze., 29,413–425.Google Scholar
  53. 53.
    Scharrer, K. (1937). The action of ions of the alkali group on the growth of plants, especially the simultaneous influence of potassium and sodium ions. Forschungs-dienst, 6,180–187.Google Scholar
  54. 54.
    Kabanov, V.V., & Myasoedov, N.A. (1974). Toxicity of alkaline cations for tomato plants. Fiziol. Rast. (Moscow), 21,391–397.Google Scholar
  55. 55.
    Bingham, F.T., Bradford, G.R., & Page, A.L. (1964). Toxicity of lithium. Calif. Agric, 18,6–7.Google Scholar
  56. 56.
    Bingham, F.T., Page, A.L., & Bradford, G.R. (1964). Tolerance of plants to lithium. Soil Sci., 98,4–8.CrossRefGoogle Scholar
  57. 57.
    Gupta, I.C. (1974). Lithium tolerance of wheat, barley, rice and gram at germination and seedling stage. Indian J. Agric. Res., 8,103–107.Google Scholar
  58. 58.
    Rankin, W.H. (1917). The penetration of foreign substances into trees. Phytopathology, 7,5–13.Google Scholar
  59. 59.
    Rumbold, C. (1920). Giving medicine to trees. Am. For., 26,359–362.Google Scholar
  60. 60.
    Pirschle, K. (1934). Research on the physiological effect of the elements, as shown by growth experiments with Aspergillus niger (stimulation and toxicity). Planta., 25,177–224.CrossRefGoogle Scholar
  61. 61.
    Darby, J.F., & Westgatge, P.J. (1958). Lithium as a fungicide on celery. Proc. Fla. State Hort. Soc., 77,59–62.Google Scholar
  62. 62.
    Kent, N.L. (1941). The influence of lithium salts on certain cultivated plants and their parasitic diseases. Ann. Appl. Biol., 28,189–209.CrossRefGoogle Scholar
  63. 63.
    Vidali, A. (1951). Field experiments with lithium carbonate for control of tobacco mildew. Not. Mal. Piante, 76,35–39.Google Scholar
  64. 64.
    Wortley, W.R.S. (1936). Report of research, 1934–6. The effect of salts of lithium on the resistance of certain plants to disease. J.R. Agric. Soc. Engl., 97,492–498.Google Scholar
  65. 65.
    Takamatsu, S., Ishizaki, H., & Kunoh, H. (1979). Cytological studies of early stages of powdery mildew in barley and wheat. VI. Antagonistic effects of calcium and lithium on the infection of coleoptiles of barley by Erysiphe graminis hordei. Can. J. Bot., 57,408–412.CrossRefGoogle Scholar
  66. 66.
    Wallace, A., Romney, E.M., & Kinnear, J. (1977). Frequency distribution of several trace metals in 72 corn plants grown together in contaminated soil in the greenhouse. Commu. Soil Sci. Plant Anal., 8,693–691.CrossRefGoogle Scholar
  67. 67.
    Wallace, A., & Romney, E.M. (1977). Synergistic trace metal effects in plants. Commun. Soil Sci. Plant Anal., 5,773–780.CrossRefGoogle Scholar
  68. 68.
    Wallace, A., Romney, E.M., Cha, J.W., & Chaudry, F.W. (1977). Lithium toxicity in plants. Commun. Soil Sci. Plant Anal., 8,773–780.CrossRefGoogle Scholar
  69. 69.
    Anderson, C.E. (1989). Unpublished data.Google Scholar
  70. 70.
    Wallace, A. (1979). Excess trace metal effects on calcium distribution in plants. Commun. Soil Sci. Plant Anal., 10,413–419.CrossRefGoogle Scholar
  71. 71.
    Einor, L.O., & Dzyubak, O.I. (1966). Effect of inorganic salts and organic solvents on the activity of the Hill’s reaction with pea chloroplasts. Ukr. Bot. Zh., 23,3–10.Google Scholar
  72. 72.
    El-Sheikh, A.M., Ulrich, A., & Boyer, T.C. (1971). Effects of lithium on growth, salt absorption, and chemical composition of sugar beet plants. Agron. J., 63,755–758.CrossRefGoogle Scholar
  73. 73.
    Sneva, F.A. (1979). Lithium toxicity in seedlings of three cool season grasses. Plant Soil, 53,219–224.CrossRefGoogle Scholar
  74. 74.
    Rehab, R.I., & Wallace, A. (1978). Excess trace metal effects on cotton. IV. Chromium and lithium in Yolo loam soil. Commun. Soil Sci. Plant Anal, 9,645–651.CrossRefGoogle Scholar
  75. 75.
    Rehab, F.I., & Wallace, A. (1978). Excess trace metal effects on cotton. III. Chromium and lithium in solution. Commun. Soil Sci. Plant Anal., 9,637–644.CrossRefGoogle Scholar
  76. 76.
    Edwards, J.K. (1941). Cytological studies of toxicity in meristem cells of roots of Zea mays. II. The effects of lithium chloride. Proc. S.D. Acad. Sci., 21,65–61.Google Scholar
  77. 77.
    Furuta, T., Martin, W.C., & Perry, F. (1963). Lithium toxicity as a cause of leaf scorch on Easter lily. Proc. Am. Soc. Hort. Sci., 83,803–807.Google Scholar
  78. 78.
    Wallihan, E.F., Sharpless, R.G., & Printy, W.L. (1978). Cumulative toxic effects of boron, lithium, and sodium on water used for hydroponic production of tomatoes. J. Am. Soc. Hort. Sci., 103,14–16.Google Scholar
  79. 79.
    Nakamura, N. (1904). Can lithium and cesium salts exert any stimulant action on phanerogams? Bull. Coll. Agric. Tokyo Imp. Univ., 6,153–157.Google Scholar
  80. 80.
    Hance, F.E. (1933). Chemistry. Hawaiian Sugar Planters’ Assoc. Proc. of 53rd Annual Meeting, pp. 46–55.Google Scholar
  81. 81.
    Puccini, G. (1957). Stimulation action of lithium salts on the flower production of the perpetual carnation of the Riveria. Ann. Sper. Agrar., 11,41–63.Google Scholar
  82. 82.
    Okhrimenko, M.J., & Kuz’menko, L.M. (1975). The effect of lithium compounds and their importance in plants. In P. A. Vlasyuk (Ed.), Fertilizers and preparations containing trace elements (p. 200). Naukova Dumka. Kiev.Google Scholar
  83. 83.
    Vlasyuk, P.A., Okhrimenko, M.F., Sivak, L.A., & Kuz’menko, L.M. (1978). The effect of carboammophoska enriched in lithium on carbohydrate metabolism and productivity of potato. Agrokhimya., 7,75–80.Google Scholar
  84. 84.
    McStay, N.G., Rodgers, H.H., & Anderson, C.E. (1980). Effects of lithium on Phaseolus vulgaris L. Sci. of the Total Environ., 16,185–191.CrossRefGoogle Scholar
  85. 85.
    Kent, N.L. (1941). Absorption, translocation, and ultimate fate of lithium in the wheat plant. New Phytol., 40,291–298.CrossRefGoogle Scholar
  86. 86.
    Birch-Hirschfeld, L. (1920). Investigation of the speed of diffusion of soluble dissolved substances in plants. Jahrb. Wiss. Bot., 59,170–262.Google Scholar
  87. 87.
    Hinz, U., & Fischer, H. (1976). Transport of lithium and cesium along the stolons of Saxifraga sarmentosa L.Z. Pflanzenphysiol., 78,283–292.Google Scholar
  88. 88.
    Jacobson, L., Moore, D.P., & Hannapel, R.J. (1960). Role of calcium in absorption on monovalent cations. Plant Physiol., 35,352–351.PubMedCrossRefGoogle Scholar
  89. 89.
    Laties, G.G. (1959). The development and control of coexisting respiratory systems in slices of chicory root. Arch. Biochem. Biophys., 79,378–391.CrossRefGoogle Scholar
  90. 90.
    Kandeler, R. (1970). The effect of lithium and ADP on the phytochrome regulation of flowering. Planta., 90,203–207.CrossRefGoogle Scholar
  91. 91.
    Englemann, W. (1972). Lithium slows down the Kalanchoe clock, Z. Naturforsch. B: Anorg. Chem. Org. Chem. Biochem. Biophys. Biol., 27,477–478.Google Scholar
  92. 92.
    Englemann, W. (1973). A slowing down of circadian rhythms by lithium ions. Z. Naturforsch. C: Biochem. Biophys. Biol. Virol., 28,733–736.Google Scholar
  93. 93.
    Desbiez, M.O., & Thellier, M. (1975). Lithium inhibition of the mechanically induced precedence between cotyledonary buds. Plant Sci. Lett., 4,315–321.CrossRefGoogle Scholar
  94. 94.
    Desbiez, M.O., & Thellier, M. (1977). Induced precedence between cotyledonary buds: Ionic or ouabain treatments and memorization effects. In M. Thellier, et al. (Eds.), Transmembrane Ion Exchange in Plants, (p. 607). CNRS. Paris.Google Scholar
  95. 95.
    Desbiez, M.O., & Thellier, M. (1978). Ionic control of the occurrence of a biological rhythm for precedence between axillary buds. Physiol. Veg., 16,785–798.Google Scholar
  96. 96.
    Boyer, N., Chapelle, G., & Gaspar, T. (1979). Lithium inhibition of the thigmomor-phogenetic response in Bryonia dioica. Plant Physiol., 63,1215–1216.PubMedCrossRefGoogle Scholar
  97. 97.
    Louguet, P., & Thellier, M. (1976). The influence of lithium on the degree of opening and speed of opening and closing of stomata in Pelargonium hortorum. C.R. Hebd. Seances Acad. Sci. Ser. D., 282,2171–2174.Google Scholar
  98. 98.
    Carlier, G., & Thellier, M. (1979). Lithium-perturbation of the induction of a methyl-glucose transport during aging of foliar disks of Pelargonium zonale (L.) aiton. Physiol. Veg., 17,13–26.Google Scholar
  99. 99.
    Vlasyuk, P.A., & Okhrimenko, M.F. (1969). Effect of lithium on the photochemical activity of chloroplasts of tomato and pepper. Dopov. Akad. Nauk. Ukr. RSR. Ser. B: Geol: Geofiz. Khim. Biol., 31,353–356.Google Scholar
  100. 100.
    Vlasyuk, P.A., Okhrimenko, M.F., & Uyazdovskaya, O.S. (1968). The effect of lithium on the photochemical activity of chloroplasts in potato leaves. Dokl. Vses. Akad. Skh. Nauk. im. V.I. Lenina., 11,5–7.Google Scholar
  101. 101.
    Ezdakova, L.A. (1962). Effect of lithium top-dressing on photosynthesis and respiration in tobacco leaves. Naukn. Dokl. Vyssh. Shk. Biol. Nauki., 2,137–142.Google Scholar
  102. 102.
    Vlasyuk, P.A., Okhrimenko, M.F., & Kuz’menko, L.M. (1973). Effects of lithium on the content and composition of organic acids in plants of the Solanaceae family. Fiziol. Biokhim. Kul’t. Rast., 5,121–124.Google Scholar
  103. 103.
    Vlasyuk, P.A., Okhrimenko, M.F., & Sivak, L.A. (1976). Effect of lithium on activity of phosphorylase in tomato and potato plants. Fiziol. Biokhim. Kul’t. Rast., 8,493–496.Google Scholar
  104. 104.
    Neskovic, B.A. (1976). New information on the biological effect of lithium. Period. Biol., 78,148–152.Google Scholar
  105. 105.
    Vlasyuk, P.A., Kuz’menko, L.M., & Okhrimenko, M.F. (1979). The role of lithium in protein-nucleic acid metabolism in plants. Fiziol. Biokhim. Kul’t. Rast., 11,438–447.Google Scholar
  106. 106.
    Hassan, M.N. (1954). The effect of single salt solutions on the histogenesis of radish seedlings. Alexandria J. Agric. Res., 2,20–27.Google Scholar
  107. 107.
    Powell, J.T., & Richards, E.G. (1972). Specific effects of lithium on stacking equilibria in polynucleotides. Acta Biochim. Biophys. Acad. Sci. Hung., 281, 145–151.Google Scholar
  108. 108.
    Vlasyuk, P.A., Okhrimenko, M.F., Kuz’menko, L.M., & Sivak, L.A. (1978). Effect of lithium on formation of amino-acyl-tRNA. Fiziol. Biokhim. Kul’t. Rast., 10, 297–301.Google Scholar
  109. 109.
    Vlasyuk, P. A., & Kuz’menko, L.M. (1975). Metabolic activity of potato plant ribo-somes in dependence on their supply with lithium. Fiziol. Biokhim. Kul’t. Rast., 7,563–568.Google Scholar
  110. 110.
    Vlasyuk, P.A., Kuz’menko, L.M., & Okhrimenko, M.F. (1975). Content and fractional composition of potato protein and nucleic acids under lithium effect. Dopov. Akad. Nauk. Ukr. RSR. Ser. B: Geol. Geofiz. Khim. Biol., pp. 742–748.Google Scholar
  111. 111.
    Vlasyuk, P.A., Okhrimenko, M.F., & Kuz’menko, L.M. (1975). Fractional and amino acidic compositions of proteins and content of free amino acids in potato under the influence of lithium. Fiziol Biokhim. Kul’t. Rast., 7,115–120.Google Scholar
  112. 112.
    Bhattacharyya, B., & Wolff, J. (1976). Stabilization of microtubules by lithium ion. Biochem. Biophys. Res. Commun., 75,383–390.CrossRefGoogle Scholar
  113. 113.
    Johnson, F.N. (Ed.). (1975). Lithium research and therapy (p. 569). New York: Academic Press.Google Scholar
  114. 114.
    Bello, J., Haas, D., & Bello, H.R. (1966). Interactions of protein-denaturing salts with model amides. Biochemistry, 5,2539–2548.PubMedCrossRefGoogle Scholar
  115. 115.
    Armbruster, A.M., & Pullman, A. (1974). The effect of cation binding on the rotation barrier of the peptide bond. FEBS Lett., 49,18–21.PubMedCrossRefGoogle Scholar
  116. 116.
    Williams, R.J.T. (1973). The chemistry and biochemistry of lithium. In S. Geershon & B. Shopsin (Eds.), Lithium. Its role in psychiatric research and treatment (p. 358). New York: Plenum Press.Google Scholar
  117. 117.
    Stracher, A. (1960). Deuterium exchanges or ribonuclease and oxidized ribonuclease in strong salt solutions. C.R. Trav. Lab. Carlsberg, 30,468–481.Google Scholar
  118. 118.
    Evans, H.J., & Sorger, G.J. (1966). Role of mineral elements with emphasis on univalent cations. Annu. Rev. Plant Physiol., 17,47–76.CrossRefGoogle Scholar
  119. 119.
    Kergosien, Y., Thellier, M., & Desbiez, M.O. (1979). Precedence between axillary buds in Bidens pilosus L. Modeling at the macroscopic level in terms of catastrophes or at the microscopic level in terms of a cellular “pump and leak”. In P. Delattre & M. Thellier (Eds.), Elaboration and Justification of Models (p. 343). Paris: Malione.Google Scholar
  120. 120.
    Thellier, M., Desbiez, M.O. (1977). Model of a switching “on” and “off” pump and leak, as a relay and amplification mechanism in the control of morphogenesis. In E. Marre & O. Ciferri (Eds.), Regulation of cell membrane activities in plants (p. 332). Amsterdam: Elsevier. North-Holland Biomedical Press.Google Scholar
  121. 121.
    Thellier, M., Thoiron, B., Thoiron, A., Le Guiel, J., & Luttge, U. (1980). Effects of lithium and potassium on recovery of solute uptake capacity of Acer pseudoplatanus cells after gas shock. Physiol. Plant., 49,93–99.CrossRefGoogle Scholar
  122. 122.
    Heagle, A.S., Body, D.E., & Heck, W.W. (1973). An open top field chamber to assess the impact of air pollution. J. Environ. Qual., 2,365–368.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Charles E. Anderson

There are no affiliations available

Personalised recommendations