Application of 57Fe Mössbauer Spectroscopy to Problems in Clay Mineralogy and Soil Science: Possibilities and Limitations

  • E. Murad
Part of the Advances in Soil Science book series (SOIL, volume 12)


The recoil-free emission and resonant absorption of γ rays (Mössbauer spectroscopy) has, since its discovery three decades ago (Mössbauer, 1958a, 1958b), become an increasingly important technique for the study of iron-bearing minerals. The fundamental requirement for the observation of γ-ray resonance is an inhibition of recoil in both emitting and absorbing atoms, so the development of a Mössbauer spectrum requires these to be bound in solids. Because resonant interactions between γ rays and matter take place at nuclei, Mössbauer spectroscopy is sensitive to the immediate nuclear environment in the γ-ray source and absorber. This is therefore a typical short-range method, which may serve as a probe for the electric and magnetic conditions in the vicinity of nuclei.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amarasiriwardena, D. D., E. DeGrave, L. H. Bowen, S. B. Weed. 1986. Quantitative determination of aluminum-substituted goethite-hematite mixtures by Mössbauer spectroscopy. Clays Clay Mineral. 34:250–256.CrossRefGoogle Scholar
  2. Amigó, J. M., J. P. Fortuné. 1981. Mineralogical appliation of the Mössbauer effect to the study of siderites from Batère (France); comparison with siderites of hydrothermal origin. N. Jb. Miner. Mh. 237–244.Google Scholar
  3. Annersten, H., S. S. Hafner. 1973. Vacancy distribution in synthetic spinels of the series Fe3O4-y-Fe2O3. Z. Krist. 137:321–340.CrossRefGoogle Scholar
  4. Bancroft, G. M., A. G. Maddock, R. G. Burns. 1967. Applications of the Mossbauer effect to silicate mineralogy —I. Iron silicates of known crystal structure. Geochim. Cosmochim. Acta 31:2219–2246.Google Scholar
  5. Bigham, J. M., D. C. Golden, L. H. Bowen, S. W. Buol, S. B. Weed. 1978a. Iron oxide mineralogy of well-drained Ultisols and Oxisols: I. Characterization of iron oxides in soil clays by Mössbauer spectroscopy, X-ray diffractometry, and selected chemical techniques. Soil Sci. Soc. Amer. J. 42:816–825.Google Scholar
  6. Bigham, J. M., D. C. Golden, S. W. Buol, S. B. Weed, and L. H. Bowen. 1978b. Iron oxide mineralogy of well-drained Ultisols and Oxisols: II. Influence on color, surface area, and phosphate retention. Soil Sci. Soc. Amer. J. 42:825–830.Google Scholar
  7. Bowen, L. H., S. B. Weed. 1981. Mössbauer spectroscopic analysis of iron oxides in soil. pp. 247–261. In: J. G. Stevens and G. K. Shenoy (eds.), Mössbauer spectroscopy and its chemical applications. Amer. Chem. Soc, Washington, DC.CrossRefGoogle Scholar
  8. Bowen, L. H., S. B. Weed. 1984. Mössbauer spectroscopy of soils and sediments, pp. 217–242. In: R. H. Herber (ed.), Chemical Mössbauer spectroscopy. Plenum, NY.Google Scholar
  9. Bowen, L. H., S. B. Weed, J. G. Stevens. 1969. Mössbauer study of micas and their potassium-depleted products. Amer. Mineral. 54:72–84.Google Scholar
  10. Bronger, A., J. Ensling, P. Gütlich, H. Spiering. 1983. Rubification of terrae rossae in Slovakia: A Mössbauer effect study. Clays Clay Mineral. 31:269–276.CrossRefGoogle Scholar
  11. Cardile, C. M., J. H. Johnston, D. P. E. Dickson. 1986. Magnetic ordering at 4.2 and 1.3 K in nontronites of different iron contents: A 57Fe Mössbauer spectroscopic study. Clays Clay Mineral 34:233–238.CrossRefGoogle Scholar
  12. Childs, C. W., J. H. Johnston. 1980. Mossbauer spectra of proto-ferrihydrite at 77 K and 295 K, and a reappraisal of the possible presence of akaganeite in New Zealand soils. Aust. J. Soil Res. 18:245–250.CrossRefGoogle Scholar
  13. Childs, C. W., J. H. Johnston. 1980. Mössbauer spectra of proto-ferrihydrite at 77 K and 295 Kf and a reappraisal of the possible presence of akaganéite in New Zealand soils. Aust. J. Soil Res. 18:245–250.CrossRefGoogle Scholar
  14. Childs, C. W., A. D. Wilson, 1983. Iron oxide minerals in soils of the Ha’apai Group, Kingdom of Tonga. Aust. J. Soil Res. 21:489–503.CrossRefGoogle Scholar
  15. Childs, C. W., B. A. Goodman, G. J. Churchman. 1978. Application of Mossbauer spectroscopy to the study of iron oxides in some red and yellow/brown soil samples from New Zealand, pp. 555–565. In: M. M. Mortland and V. C. Farmer (eds.), International clay conference 1978. Elsevier, Amsterdam.Google Scholar
  16. Childs, C. W., B. A. Goodman, E. Paterson, F. W. D. Woodhams. 1980 The nature of iron in akaganeite. Aust. J. Chem. 33:15–26.CrossRefGoogle Scholar
  17. Childs, C. W., D. P. E. Dickson, B. A. Goodman, D. G. Lewis. 1984. Moessbauer parameters for ferrihydrites at 4 K. Aust. J. Soil Res. 22:149–154.CrossRefGoogle Scholar
  18. Coey, J. M. D. 1980. Clay minerals and their transformations studied with nuclear techniques: The contribution of Mossbauer spectroscopy. Atom. Energy Rev. 18:73–124.Google Scholar
  19. Coey, J. M. D. 1984. Mössbauer spectroscopy of silicate minerals, pp. 443–509. In: G. J. Long (ed.), Mossbauer spectroscopy applied to inorganic chemistry, vol. 1. Plenum, NY.Google Scholar
  20. Coey, J. M. D., P. W. Readman. 1973. New spin structure in an amorphous iron gel. Nature 246:476–478.CrossRefGoogle Scholar
  21. Coey, J. M. D., A. H. Morrish, G. A. Sawatzky. 1971. A Mossbauer study of conduction in magnetite. J. Physique 32 C1:271–273.Google Scholar
  22. Coey, J. M. D., O. Ballet, A. Moukarika, J. L. Soubeyroux. 1981. Magnetic properties of sheet silicates: 1:1 layer minerals. Phys. Chem. Mineral. 7:141–148.CrossRefGoogle Scholar
  23. DeGrave, E., R. Vochten. 1985. An 57Fe Mössbauer study of ankerite. Phys. Chem. Mineral. 12:108–113.CrossRefGoogle Scholar
  24. DeGrave, E., A. E. Verbeeck, and D. G. Chambaere. 1985. Influence of small aluminum substitutions on the hematite lattice. Phys. Lett. 107A: 181–184.Google Scholar
  25. DeGrave, E., R. M. Persoons, D. G. Chambaere, R. E. Vandenberghe, L. H.Bowen. 1986. An 57Fe Mössbauer effect study of poorly crystalline γ-FeOOH. Phys. Chem. Mineral. 13:61–67.CrossRefGoogle Scholar
  26. Diamant, A., M. Pasternak, A. Banin. 1982. Characterization of adsorbed iron in montmorillonite by Mossbauer spectroscopy. Clays Clay Mineral. 30:63–66.CrossRefGoogle Scholar
  27. Dickson, D. P. E., L. Heller-Kallai, I. Rozenson. 1979. Mössbauer spectroscopic studies of iron in organic material from natural sedimentary environments. Geochim. Cosmochim. Acta 43:1449–1453.CrossRefGoogle Scholar
  28. Dyar, M. D. 1984. Precision and interlaboratory reproducibility of measurements of the Mossbauer effect in minerals. Amer. Mineral. 69:1127–1144.Google Scholar
  29. Evans, B. J., R. G. Johnson, F. E. Senftle, C. Blaine Cecil, F. Dulong. 1982. The 57Fe Mössbauer parameters of pyrite and marcasite with different parameters. Geochim. Cosmochim Acta 46:761–775.CrossRefGoogle Scholar
  30. Eymery, J.-P., P. Moine, A. LeRoy. 1978. Application de la spectrometrie Mossbauer a Tetude d’un cas de pseudomorphose de la siderose par l’hématite. Bull. Mineral. 101:393–394.Google Scholar
  31. Fleisch, J., R. Grimm, J. Grübler, P. Gütlich. 1980. Determination of the aluminum content of natural and synthetic alumogoethites using Mossbauer spectroscopy. J. Physique 41 C1: 169–170.Google Scholar
  32. Fysh, S. A., P. E. Clark. 1982a. Aluminous goethite: A Mössbauer study. Phys. Chem. Mineral. 8:180–187.CrossRefGoogle Scholar
  33. Fysh, S. A., P. E. Clark. 1982b. Aluminous hematite: A Mössbauer study. Phys. Chem. Mineral. 8:257–267.CrossRefGoogle Scholar
  34. Fysh, S. A., J. D. Cashion, P. E. Clark. 1983. Mössbauer effect studies of iron in kaolin. I. Structural iron. Clays Clay Mineral. 31:285–292.CrossRefGoogle Scholar
  35. Gangas, N. H., A. Simopoulos, A. Kostikas, N. J. Yassoglou, S. Filippakis. 1973. Mössbauer studies of small particles of iron oxides in soil. Clays Clay Mineral. 21:151–160.CrossRefGoogle Scholar
  36. Golden, D. C., L. H. Bowen, S. B. Weed, J. M. Bigham. 1979. Mössbauer studies of synthetic and soil-occurring aluminum-substituted goethites. Soil Sci. Soc. Amer. J. 43:802–808.CrossRefGoogle Scholar
  37. Goodman, B. A. 1976. The effect of lattice substitutions on the derivation of quantitative site populations from the Mössbauer spectra of 2:1 layer lattice silicates. J. Physique 37 C6:819–823.Google Scholar
  38. Goodman, B. A. 1980. Mössbauer spectroscopy, pp. 1–92. In: J. W. Stucki, W. L. Banwart (eds.), Advanced chemical methods for soil and clay minerals research. Reidel, Dordrecht, Boston.Google Scholar
  39. Goodman, B. A., D. G. Lewis. 1981. Mössbauer spectra of aluminous goethites (α-FeOOH). J. Soil Sci. 32:351–363.CrossRefGoogle Scholar
  40. Goodman, B. A., M. J. Wilson. 1973. A study of the weathering of a biotite using the Mössbauer effect. Mineral. Mag. 39:448–454.CrossRefGoogle Scholar
  41. Goodman, B. A., J. D. Russell, A. R. Fraser, F. W. D. Woodhams. 1976. A Mössbauer and I. R. spectroscopic study of the structure of nontronite. Clays Clay Mineral. 24:53–59.CrossRefGoogle Scholar
  42. Heller-Kallai, L., I. Rozenson. 1980. Dehydroxylation of dioctahedral phyllosili-cates. Clays Clay Mineral. 28:355–368.CrossRefGoogle Scholar
  43. Heller-Kallai, L., I. Rozenson. 1981. The use of Mössbauer spectroscopy of iron in clay mineralogy. Phys. Chem. Mineral. 7:223–238.CrossRefGoogle Scholar
  44. Helsen, J. A., B. A. Goodman. 1983. Characterization of iron(II)-and iron(III)-exchanged montmorillonite and hectorite using the Mössbauer effect. Clay Mineral.18:117–125.CrossRefGoogle Scholar
  45. Hilton, J., G. J. Long, J. S. Chapman, J. P. Lishman. 1986. Iron mineralogy in sediments. A Mössbauer study. Geochim. Cosmochim. Acta 50:2147–2151.CrossRefGoogle Scholar
  46. Hogg, C. S., P. J. Malden, R. E. Meads. 1975. Identification of iron-containingimpurities in natural kaolinites using the Mössbauer effect. Mineral. Mag. 40:89–96.CrossRefGoogle Scholar
  47. Hrynkiewicz, A. Z., D. S. Kulgawczuk. 1963. Hyperfine structure of the 14.4 keV gamma line of 57Fe in some iron oxy-hydroxides investigated with the Mössbauer effect. Acta Phys. Polonica 25:689–692.Google Scholar
  48. Huggins, F. E., G. P. Huffman, D. A. Kosmack, D. E. Lowenhaupt. 1980. Mossbauer detection of goethite (α-FeOOH) in coal and its potential as an indicator of coal oxidation. Int. J. Coal Geol. 1:75–81.CrossRefGoogle Scholar
  49. Ibanga, I. J., S. W. Buol, S. B. Weed, L. H. Bowen. 1983. Iron oxides in petroferric materials. Soil Sci. Soc. Amer. J. 47:1240–1246.CrossRefGoogle Scholar
  50. Janot, C, H. Gibert. 1970. Les constituants du fer dans certaines bauxites naturelles étudiées par effet Mössbauer. Bull. Soc. Franc. Minéral. Crist. 93:213–223.Google Scholar
  51. Janot, C., M. Chabanel, and E. Herzog. 1968. Étude d’une limonite par effet Mössbauer. Bull. Soc. Franc. Mineral. Crist. 91:166–171.Google Scholar
  52. Janot, C, H. Gibert, C. Tobias. 1973. Caractérisation de kaolinites ferrifères par spectrometrie Mössbauer. Bull. Soc. Franc. Minéral. Crist. 96:281–291.Google Scholar
  53. Janot, C, H. Gibert, X. de Gramont, R. Biais. 1971. Étude des substitutions Al-Fe dans des roches latéritiques. Bull. Soc. Franc. Minéral. Crist. 94:367–389.Google Scholar
  54. Johnson, C. E. 1969. Antiferromagnetism in γ FeOOH. A Mossbauer effect study. J. Phys. C 2:1996–2002.Google Scholar
  55. Johnston, J. H., C. M. Cardile. 1985. Iron sites in nontronite and the effect of interlayer cations from Mössbauer spectra. Clays Clay Mineral. 33:21–30.CrossRefGoogle Scholar
  56. Johnston, J. H., K. Norrish. 1981. A 57Fe Mössbauer spectroscopic study of a selection of Australian and other goethites. Aust. J., Soil Res. 19:231–237.CrossRefGoogle Scholar
  57. Kistner, O. C., A. W. Sunyar. 1960. Evidence for quadrupole interaction of Fe57m, and influence of chemical binding on nuclear gamma-ray energy. Phys. Rev. Lett. 4:412–415.CrossRefGoogle Scholar
  58. Kraan. A. M. van der. 1973. Mössbauer effect studies of surface ions of ultrafine α-Fe2 O3 particles. Phys. Stat. Sol. a 18:215–226.CrossRefGoogle Scholar
  59. Kündig, W., H. Bömmel, G. Constabaris, R. H. Lindquist. 1966. Some properties of supported small α-Fe2 O3 particles determined with the Mössbauer effect. Phys. Rev.142:327–333.CrossRefGoogle Scholar
  60. Meisel, W., G. Kreysa. 1973. Relative Mössbauer-Konstanten von Eisenverbin-dungen zur quantitativen Analyse von Gemischen. Z. Anorg.-Allg. Chem. 395:31–36.CrossRefGoogle Scholar
  61. Morrish, A. H. 1980. Morphology and physical properties of gamma iron oxide, pp. 171–197. In: H. C. Freyhardt (ed.), Crystals 2: growth and properties. Springer-Verlag, Berlin.Google Scholar
  62. Mössbauer, R. M. 1958a. Kernresonanzabsorption von Gammastrahlung in Ir191. Natur-wiss. 45:538–539.CrossRefGoogle Scholar
  63. Mössbauer, R. M. 1958b. Kernresonanzfluoreszenz von Gammastrahlung in Ir191. Z. Phys. 151:124–143.CrossRefGoogle Scholar
  64. Murad, E. 1979a. Mössbauer spectra of goethite: Evidence for structural imperfections. Mineral. Mag. 43:355–361.CrossRefGoogle Scholar
  65. Murad, E. 1979b. Mössbauer and X-ray data on ß-FeOOH (akaganéite). Clay Mineral.14:273–283.CrossRefGoogle Scholar
  66. Murad, E. 1982a. The characterization of goethite by Mössbauer spectroscopy. Amer. Mineral. 67:1007–1011.Google Scholar
  67. Murad, E. 1982b. Iron oxide mineralogy of a hydrothermal assemblage on Santorini Island, Aegean Sea. Mineral. Mag. 67:89–93.CrossRefGoogle Scholar
  68. Murad, E. 1982c. Ferrihydrite deposits on an artesian fountain in lower Bavaria. N. Jb. Mineral. Mh. 45–56.Google Scholar
  69. Murad, E. 1984. Magnetic ordering in andradite. Amer. Mineral. 69:722–724.Google Scholar
  70. Murad, E. 1985. The influence of aluminium substitution on the absorption of gamma-rays in hematite. Phys. Lett. lllA:79–82.Google Scholar
  71. Murad, E. 1987. Mössbauer spectra of nontronites: structural implications and characterization of associated iron oxides. Z. Pflanzenernähr. Bodenk. 150:279–285.CrossRefGoogle Scholar
  72. Murad, E. 1988. Properties and behavior of iron oxides as determined by Mössbauer spectroscopy, pp. 309–350. In: J. W. Stucki, B. A. Goodman, and U. Schwertmann (eds.) Iron in soils and clay minerals. Reidel, Dordrecht, Boston.Google Scholar
  73. Murad, E., L. H. Bowen. 1987. Magnetic ordering in Al-rich goethites: Influence of crystallinity. Amer. Mineral. 72:194–200.Google Scholar
  74. Murad, E., J. H. Johnston. 1987. Iron oxides and oxyhydroxides. pp. 507–582. In: G. J. Long (ed.), Mössbauer spectroscopy applied to inorganic chemistry, vol. 2.Plenum, NY.Google Scholar
  75. Murad, E., U. Schwertmann. 1980. The Mössbauer spectrum of ferrihydrite and its relations to those of other iron oxides. Amer. Mineral. 65:1044–1049.Google Scholar
  76. Murad, E., U. Schwertmann. 1983. The influence of aluminium substitution and crystallinity on the Mössbauer spectra of goethite. Clay Mineral. 18:301–312.CrossRefGoogle Scholar
  77. Murad, E., U. Schwertmann. 1984, The influence of crystallinity on the Mössbauer spectrum of lepidocrocite. Mineral. Mag. 48:507–511.CrossRefGoogle Scholar
  78. Murad, E., U. Schwertmann. 1986. Influence of Al substitution and crystal size on the room-temperature Mössbauer spectra of hematite. Clays Clay Mineral. 34:1–6.CrossRefGoogle Scholar
  79. Murad, E., U. Schwertmann. 1988a. The characterization of poorly crystalline Si-containing natural iron oxides by Mossbauer spectroscopy. Hyperfine Interact. 41:835–838.CrossRefGoogle Scholar
  80. Murad, E., U. Schwertmann. 1988b. Iron oxide mineralogy of some deep-sea ferromanganese crusts. Amer. Mineral. 73:1395–1400.Google Scholar
  81. Murad, E., R. M. Taylor. 1984. The Mossbauer spectra of hydroxycarbonate green rusts. Clay Mineral. 19:77–83.CrossRefGoogle Scholar
  82. Murad, E., R. M. Taylor. 1986. The oxidation of hydroxycarbonate green rusts, pp. 585–593. In: G. J. Long, J. G. Stevens (eds.), Industrial applications of the Mössbauer effect. Plenum, NY.Google Scholar
  83. Nininger, R. A., D. Schroeer. 1978. Mössbauer studies on the Morin transition in bulk and microcrystalline α-Fe2O3. J. Phys. Chem: Solids 39:137–144.CrossRefGoogle Scholar
  84. Papamarinopoulos, P., P. W. Readman, Y. Maniatis, A. Simopoulos. 1982. Magnetic characterization and Mössbauer spectroscopy of magnetic concentrates from Greek lake sediments. Earth Planet. Sci. Lett. 57:173–181.CrossRefGoogle Scholar
  85. Pollak, H., J. G. Stevens. 1986. Phyllosilicates: a Mössbauer evaluation. Hyperfine Interact. 29:1153–1156.CrossRefGoogle Scholar
  86. Rozenson, I., L. Heller-Kallai. 1976a. Reduction and oxidation of Fe3+ in dioctahedral smectites—I: Reduction with hydrazine and dithionite. Clays Clay Mineral. 24:271–282.CrossRefGoogle Scholar
  87. Rozenson, I., L. Heller-Kallai. 1976b. Reduction and oxidation of Fe3+ in di-octahedral smectites—2: Reduction with sodium sulphide solutions. Clays Clay Mineral. 24:283–288.CrossRefGoogle Scholar
  88. Rozenson, I., L. Heller-Kallai. 1978. Reduction and oxidation of Fe3+ in di-octahedral smectites—3: Oxidation of octahedral iron in montmorillonite. Clays Clay Mineral. 26:88–92.CrossRefGoogle Scholar
  89. Rozenson, I., E. R. Bauminger, L. Heller-Kallai. 1979. Mössbauer spectra of iron in 1:1 phyllosilicates. Amer. Mineral. 64:893–901.Google Scholar
  90. Schwertmann, U. 1985. The effect of pedogenic environment on iron oxides. Adv. Soil Sci. 1:171–200.Google Scholar
  91. Schwertmann, U. 1988. Some properties of soil and synthetic iron oxides, pp. 203–250. In: J. W. Stucki, B. A. Goodman, U. Schwertmann (eds.), Iron in soils and clay minerals. D. Reidel. Dordrecht, Boston.Google Scholar
  92. Schwertmann, U., N. Kämpf. 1984. Properties of goethite and hematite in kaolinitic soils of southern and central Brazil. Soil Sci. 139:344–350.CrossRefGoogle Scholar
  93. Schwertmann, U., E. Murad. 1983. Effect of pH on the formation of goethite and hematite from ferrihydrite. Clays Clay Mineral. 31:277–284.CrossRefGoogle Scholar
  94. Schwertmann, U., E. Murad, D. G. Schulze. 1982a. Is there Holocene reddening (hematite formation) in soils of axeric temperate areas? Geoderma 27:209–223.CrossRefGoogle Scholar
  95. Schwertmann, U., D. G. Schulze, E. Murad. 1982b. Identification of ferrihydrite in soils by dissolution kinetics, differential X-ray diffraction, and Mössbauer spectroscopy. Soil Sci. Soc. Amer. J. 46:869–875.CrossRefGoogle Scholar
  96. Schwertmann, U., L. Carlson, E. Murad. 1987. Properties of iron oxides in two Finnish lakes in relation to the environment of their formation. Clays Clay Mineral. 35:297–304.CrossRefGoogle Scholar
  97. Simopoulos, A., A. Kostikas, I., Sigalas, N. H. Gangas, A. Moukarika. 1975. Mössbauer study of transformations induced in clay by firing. Clays Clay Mineral. 23:393–399CrossRefGoogle Scholar
  98. Stevens, J. G. 1983. Isomer shift reference scales. Hyperfine Interact. 13:221–236.CrossRefGoogle Scholar
  99. Taylor, R. M. 1980. Formation and properties of Fe(II)Fe(III) hydroxy-carbonate and its possible significance in soil formation. Clay Mineral. 15:369–382.CrossRefGoogle Scholar
  100. Taylor, R. M., R. M. McKenzie. 1980. The influence of aluminum on iron oxides. VI. The formation of Fe(lI)-Al(III) hydroxy-chlorides, -sulfates, and -carbonates as new members of the pyroaurite group and their significance in soils. Clays Clay Mineral. 28:179–187.CrossRefGoogle Scholar
  101. Vandenberghe, R. E., A. E. Verbeeck, E. DeGrave, W. Stiers. 1986. 57Fe Mössbauer effect study of Mn-substituted goethite and hematite. Hyperfine Interact. 29:1157–1160.CrossRefGoogle Scholar
  102. Vértes, A., K. Jónás, I. Czako-Nagy, E. Nemecz. 1981. A combined application of Mössbauer spectroscopy and chemical transformations for chemical analysis. Radiochem. Radioanal. Lett. 48:93–100.Google Scholar
  103. Weaver, C. E., J. M. Wampler, T. E. Pecuil. 1967. Mössbauer analysis of iron in clay minerals. Science 156:504–508.PubMedCrossRefGoogle Scholar
  104. Wivel, C, S. Mørup. 1981. Improved computational procedure for evaluation of overlapping hyperfine parameter distributions in Mössbauer spectra. J. Phys. E 14:605–610.CrossRefGoogle Scholar
  105. Yassoglou, N. J., C. Nobeli, A. J. Kostikas, A. C. Simopoulos. 1972. Weathering of mica flakes in two soils in northern Greece evaluated by Mössbauer and conventional techniques. Soil Sci. Soc. Amer. J. 36:520–527.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 1990

Authors and Affiliations

  • E. Murad
    • 1
  1. 1.Lehrstuhl für BodenkundeTechnische Universität MüchenFreising-WeihenstephanFederal Republic of Germany

Personalised recommendations