Skip to main content

Class I Summary: Relative Importance of Forest Source and Sink Strength and Some Potential Consequences of These Functions

  • Chapter
Air Pollution and Forests

Part of the book series: Springer Series on Environmental Management ((SSEM))

  • 222 Accesses

Abstract

The Class I relationship between forest ecosystems and air pollution is of primary importance when the atmospheric load of air contaminants from anthropogenic sources is relatively low. This situation exists locally and regionally when the sources of air pollutants produced by the activities of human beings are not operating or are operating at a low level, or when meteorological conditions are not conducive to atmospheric accumulation. On a global scale, the Class I relationship may be extensive throughout those regions relatively remote from the activities of people. The specific concentration of air contaminants under “low” conditions is variable depending on the pollutant, but in general is meant to approximate “background,” clean-air concentration as, for example, presented by Rasmussen et al. (1975) for the major trace gases in μg m-3: sulfur dioxide (1– 4), hydrogen sulfide (0.3), dinitrogen oxide (460–490), nitric oxide (0.3–2.5), nitrogen dioxide (2–2.5), ammonia (4), carbon monoxide (100), ozone (20–60), and reactive hydrocarbons (< 1). Since the majority of air contaminants of greatest significance to vegetative and human health (Table 2–1) originate from, and are removed by, both anthropogenic and natural agents, it is essential to evaluate the importance of forest ecosystems in the latter group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles, F.B., L.E. Craker, L.E. Forrence, and G.R. Leather. 1971. Fate of air pollutants: Removal of ethylene, sulfur dioxide, and nitrogen dioxide by soil. Science 175: 914–916.

    Article  Google Scholar 

  • Adams, D.F., S.O. Farwell, M.R. Pack, and W.L. Banesberger. 1979. Preliminary measurements of biogenic sulfur-containing gas emissions from soils. J. Air. Pollu. Control Assoc. 29: 380–383.

    CAS  Google Scholar 

  • Altshuller, A.P. 1975. Evaluation of oxidant results at CAMP sites in the United States. J. Air Pollu. Control Assoc. 25: 19–24.

    CAS  Google Scholar 

  • Altshuller, A.P. 1986. Review paper: The role of nitrogen oxides in nonurban ozone formation in the planetary boundary layer over N. America, W. Europe and adjacent areas of ocean. Atmos. Environ. 5: 39–64.

    Google Scholar 

  • Baes, C. F. Jr., H.E. Goeller, J.S. Olson, and R.M. Rotty. 1977. Carbon dioxide and climate: The uncontrolled experiment. Am. Scien. 65: 310–320.

    Google Scholar 

  • Bidwell, R.G.S. and D.E. Fraser. 1972. Carbon monoxide uptake and metabolism by leaves. Can. J. Bot. 50: 1435–1439.

    Article  CAS  Google Scholar 

  • Bolin, B. 1977. Changes of land biota and their importance for the carbon cycle. Science 196: 613–615.

    Article  PubMed  CAS  Google Scholar 

  • Bormann, F.H. and G.E. Likens. 1979. Pattern and Processes in a Forested Ecosystem. Springer-Verlag, New York, 253 pp.

    Book  Google Scholar 

  • Botkin, D.B. 1977. Forests, lakes, and the anthropogenic production of carbon dioxide. Bio. Sci. 27: 325–331.

    Google Scholar 

  • Bremner, J.M. and C.G. Steele. 1978. Role of microorganisms in the atmospheric sulfur cycle. Adv. Microb. Ecol. 2: 155–201.

    Article  CAS  Google Scholar 

  • Broecker, W.S. 1975. Climate change: Are we on the brink of pronounced global warming? Science 189: 460–463.

    Article  PubMed  CAS  Google Scholar 

  • Bruce, H.W.F. 1985. Apparent stimulation of tree growth by low ambient levels of fluoride in the atmosphere. J. Air Pollu. Control Assoc. 35: 46–48.

    Google Scholar 

  • Bruntz, S.M., W.S. Cleveland, T.E. Graedel, B. Kleiner, and J.L. Warner. 1974. Ozone concentrations in New Jersey and New York: Statistical association with related variables. Science 186: 257–258.

    Article  PubMed  CAS  Google Scholar 

  • Bufalini, J.J. 1980. Impact of National Hydrocarbons on Air Quality. Publica. No. EPA-600-2-80-086. U.S. Environmental Protection Agency, Research Triangle Park, NC.

    Google Scholar 

  • Bufalini, J.J., T.A. Walter, and M.M. Bufalini. 1976. Ozone formation potential of organic compounds. Environ. Sci. Technol. 10: 908–912.

    Article  CAS  Google Scholar 

  • Chameides, W.L. and D.H. Stedman. 1976. Ozone formation from NOx in “clean air”. Environ. Sci. Technol. 10: 150–153.

    Article  CAS  Google Scholar 

  • Cleveland, W.S. and T.E. Graedel. 1979. Photochemical air pollution in the northeast United States. Science 204: 1273–1278.

    Article  PubMed  CAS  Google Scholar 

  • Clevelend, W.S. and B. Kleiner. 1975. Transport of photochemical air pollution from Camden-Philadelphia urban complex. Environ. Sci. Technol. 9:869–872.

    Article  Google Scholar 

  • Cleveland, S.S. and J.E. McRae. 1978. Weekday-weekend ozone concentrations in the northeast United States. Environ. Sci. Technol. 12: 558–563.

    Article  CAS  Google Scholar 

  • Cleveland, W.S., T.E. Graedel, B. Kleiner, and J.L. Warner. 1974. Sunday and workday variations in photochemical air pollutants in New Jersey and New York. Science 186: 1037–1038.

    Article  PubMed  CAS  Google Scholar 

  • Cleveland, W.S., B. Kleiner, J.E. McRae, and J.L. Warner. 1976. Photochemical air pollution: Transport from the New York City area into Connecticut and Massachusetts. Science 191: 179–181.

    Article  PubMed  CAS  Google Scholar 

  • Cochran, P.H. 1978. Response of a pole-size ponderosa pine stand to nitrogen, phosphorus and sulfur. U.S.D.A. Forest Service, Research Note No. PNW-319, Portland, OR, 8 pp.

    Google Scholar 

  • Coffey, P.E. and W.N. Stasiuk. 1975. Evidence of atmospheric transport of ozone into urban areas. Environ. Sci. Technol. 9: 59–62.

    Article  CAS  Google Scholar 

  • Dahlman, R.C., B.R. Strain, and H. Rogers. 1985. Research on the response of vegetation to elevated carbon dioxide. J. Environ. Qual. 14: 1–8.

    Article  CAS  Google Scholar 

  • Focht, D.D. and W. Verstraete. 1977. Biochemical ecology of nitrification and denitrification. Adv. Microb. Ecol. 1: 135–214.

    CAS  Google Scholar 

  • Glasson, W.A. and C.S. Tuesday. 1970. Hydrocarbon reactivities in the atmospheric photooxidation of nitric acid. Environ. Sci. Technol. 4: 916–924.

    Article  CAS  Google Scholar 

  • Graedel, T.E., L.A. Farrow, and T.A. Weber. 1977. Photochemistry of the “Sunday Effect”. Environ. Sci. Technol. 7: 690–694.

    Article  Google Scholar 

  • Grimsrud, E.P., H.H. Westberg, and R.A. Rasmussen. 1975. Atmospheric reactivity of monoterpene hydrocarbons. NOx photooxidation and ozonolysis. Int. J. Chem. Kinet. Symp. 1: 183–195.

    Google Scholar 

  • Ingersoll, R.B., R.E. Inman, and W.R. Fisher. 1974. Soils potential as a sink for atmospheric carbon monoxide. Tellus 26: 151–158.

    Article  CAS  Google Scholar 

  • Isaksen, I.S., ø. Hov, and E. Hessvedt. 1978. Ozone generation over rural areas. Environ. Sci. Technol. 12: 1279–1284.

    Article  CAS  Google Scholar 

  • Japar, S.M., C.H. Wu, and H. Niki. 1974. Rate constants for the gaseous reaction of ozone with a-pinene and terpinolene. Environ. Lett. 7: 245–249.

    Article  CAS  Google Scholar 

  • Jensen, K.F. 1975. Sulfur content of hybrid poplar cuttings fumigated with sulfur dioxide. U.S.D.A. Forest Service Research Note No. NE-209, Broomall, PA, 4 pp.

    Google Scholar 

  • Jensen, K.F. and T.T. Kozlowski. 1975. Absorption and translocation of sulfur dioxide by seedlings of four forest tree species. J. Environ. Qual. 4: 379–382.

    Article  CAS  Google Scholar 

  • Kais, A.G., R.C. Hall, and J.P. Barnett. 1984. Nitric acid and benomyl stimulate rapid height growth of longleaf pine. U.S.D.A. Forest Service, Publ. No. SO-307, Southern Forest Exp. Sta. New Orleans, LA, 4 pp.

    Google Scholar 

  • Kim, C.M. 1973. Influence of vegetation types on the intensity of ammonia and nitrogen dioxide liberation from soil. Soil Biol. Biochem. 5: 163–166.

    Article  CAS  Google Scholar 

  • Kramer, P.J. 1981. Carbon dioxide concentration, photosynthesis, and dry matter production. Bioscience 31: 29–33.

    Article  CAS  Google Scholar 

  • Likens, G.E., F.H. Bormann, R.S. Pierce, J.S. Eaton, and N.M. Johnson. 1977a. Biochemistry of a Forested Ecosystem. Springer-Verlag, New York. 146 pp.

    Book  Google Scholar 

  • Likens, G.E., J.S. Eaton, and J.N. Galloway. 1977b. Precipitation as a source of nutrients for terrestrial and aquatic ecosystems. In Precipitation Scavenging. ERDA Symposium Series CONF-741003. Tech. Inform Am., Springfield, VA, pp. 552–570.

    Google Scholar 

  • Lindberg, S.E. and R.C. Harriss. 1981. The role of atmospheric deposition in an eastern United States deciduous forest. Water Air Soil Pollu. 16: 13–31.

    Article  CAS  Google Scholar 

  • Lindberg, S.E., G.M. Lovett, D.D. Richter, and D.W. Johnson. 1986. Atmospheric deposition and canopy interactions of major ions in a forest. Science 231: 141–145.

    Article  PubMed  CAS  Google Scholar 

  • Lonneman, W.A, R.L. Seila, and J.J. Bufalini. 1978. Ambient air hydrocarbon concentrations in Florida. Environ. Sci. Technol. 12: 459–463.

    Article  CAS  Google Scholar 

  • Luxmoore, R.J., E.G. O’Neill, J.M. Ells, and H.H. Rogers. 1986. Nutrient uptake and growth response of Virginia pine to elevated atmospheric carbon dioxide. J. Environ. Qual. 15: 244–251.

    Article  CAS  Google Scholar 

  • Maugh, T.H. 1975. Air pollution: Where do hydrocarbons come from? Science 189: 277–278.

    Article  PubMed  Google Scholar 

  • Maugh, T.H. 1979. SO2 pollution may be good for plants. Science 205: 383.

    Article  PubMed  Google Scholar 

  • McLean, D.M. 1978. A terminal Mesozoic “greenhouse”: Lessons from the past. Science 201: 401–406.

    Article  PubMed  CAS  Google Scholar 

  • Middleton, J.T. 1967. Air — An essential resource for agriculture. In N.C. Brady, ed., Agriculture and the Quality of Our Environment. Am. Assoc. Adv. Sci., Publ. No. 85, AAAS, Washington, DC, pp. 3–9.

    Google Scholar 

  • Miller, P.R., M.H. McCutchan, and H.D. Milligan. 1972. Oxidant air pollution in the Central Valley, Sierra Nevada Foothills and Mineral King Valley of California. Atmos. Environ. 6: 623.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, C.E. Jr., T.R. Sinclair, and K.R. Knoerr. 1977. An assessment of the use of forests as sinks for the removal of atmospheric sulfur dioxide. J. Environ. Qual. 6: 388–396.

    Article  CAS  Google Scholar 

  • National Academy of Sciences. 1977. Ozone and Other Photochemical Oxidants. National Academy of Sciences, Washington, DC, 717 pp.

    Google Scholar 

  • Noggle, J.C. and H.C. Jones. 1979. Accumulation of Atmospheric Sulfur by Plants and Sulfur-Supplying Capacity of Soils. U.S. Environmental Protection Agency, Publ. No. 600/7-79-109, Washington, DC, 37 pp.

    Google Scholar 

  • Noggle, J.C., H.C. Jones, and J.M. Kelly. 1978. Effects of accumulated nitrates on plants. Paper presented at the 71st Annual Meeting, Air Pollution Control Association, June 25–30, 1978. Houston, Texas, 16 pp.

    Google Scholar 

  • Norby, R.J., E.G. O’Neill, and R.J. Luxmoore. 1986a. Effects of atmospheric CO2 enrichment on the growth and mineral nutrition of Quercus alba seedlings in nutrient-poor soil. Plant Physiol. 82: 83–89.

    Article  PubMed  CAS  Google Scholar 

  • Norby, R.J., J. Pastor, and J. M. Melillo. 1986b. Carbon-nitrogen interactions in CO2-enriched white oaks: Physiological and long-term perspectives. Tree Physiol. 2: 233–241.

    PubMed  CAS  Google Scholar 

  • Nozhevnikova, A.N. and L.N. Yurganov. 1978. Microbiological aspects of regulating the carbon monoxide content in the earth’s atmosphere. Adv. Microb. Ecol. 2: 203–244.

    Article  Google Scholar 

  • O’Neill, E.G., R.J. Luxmoore, and R.J. Norby. 1987. Increases in mycorrhizal colonization and seedling growth in Pinus echinata and Quercus alba in an enriched CO2 atmosphere. Can. J. For. Res. 17: 878–883.

    Article  Google Scholar 

  • Perrson, R. 1974. World Forest Resources. Review of the World’s Forest Resources in the Early 1970s. Research Note No. 17, Royal College of Forestry, Stockholm, Sweden.

    Google Scholar 

  • Pratt, G.C., R.C. Hendrickson, B.I. Chevone, D.A. Christopherson, M.V. O’Brien, and S.V. Krupa. Ozone and oxides of nitrogen in the rural upper-midwestern U.S.A. Atmos. Environ. 17: 2013–2023.

    Google Scholar 

  • Rasmussen, R.A. 1972. What do the hydrocarbons from trees contribute to air pollution? J. Air Pollu. Control Assoc. 22: 537–543.

    CAS  Google Scholar 

  • Rasmussen, K.H., M. Taheri, and R.L. Kabel. 1975. Global emissions and natural processes form removal of gaseous pollutants. Water Air Soil Pollu. 4: 33–64.

    Article  CAS  Google Scholar 

  • Research Triangle Institute. 1973. Investigation of high ozone concentration in the vicinity of Garrett County, Maryland and Preston County, West Virginia. RTI Publ. NTIS No. PB-218540, Research Triangle Park, NC.

    Google Scholar 

  • Richter, H.G. 1970. Special ozone and oxidant measurements in vicinity of Mount Storm, West Virginia Research Triangle Institute, Research Triangle Park, NC.

    Google Scholar 

  • Ripperton, L.A. and D. Lillian. 1971. The effect of water vapor on ozone synthesis in the photo-oxidation of alpha-pinene. J. Air. Pollu. Control Assoc. 21: 629–635.

    CAS  Google Scholar 

  • Roberts, B.R., L.S. Dochinger, and A.M. Townsend. 1986. Effects of atmospheric deposition on sulfur and nitrogen content of four urban tree species. J. Arbor. 12: 209–212.

    Google Scholar 

  • Robinson, E. and R.C. Robbins. 1971. Emission Concentration and Fate of Particulate Atmospheric Pollutants. Final Report, SRI Project SCC-8507. Stanford Research Institute, Menlo Park, CA.

    Google Scholar 

  • Rogers, H.H., J.C. Campbell, and R.J. Volk. 1979. Nitrogen-15 dioxide uptake and incorporation by Phaseolus vulgaris (L.). Science 206: 333–335.

    Article  PubMed  CAS  Google Scholar 

  • Salop, J., N.T. Wakelyn, G.F. Levy, E.M. Middleton, and J.C. Gerwin. 1983. The application of forest classification from Landsat data as basis for natural hydrocarbon emission estimation and photochemical oxidant model simulations in southeastern Virginia J. Air Pollu. Control Assoc. 33: 17–607.

    CAS  Google Scholar 

  • Sandberg, J.S., M.J. Basso, and B.A. Okin. 1978. Winter rain and summer ozone: A predictive relationship. Science 200: 1051–1054.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, S.H. 1975. On the carbon dioxide-climate confusion. J. Atmos. Sci. 32: 2060–2066.

    Article  CAS  Google Scholar 

  • Seiler, W. 1974. The cycle of atmospheric CO. Tellus 26: 116–135.

    Article  CAS  Google Scholar 

  • Spedding, D.J. 1974. Air Pollution. Oxford Chemistry Series. Clarendon Press, Oxford, 76 pp.

    Google Scholar 

  • Stasiuk, W.N. Jr. and P.E. Coffey. 1974. Rural and urban ozone relationships in New York State. J. Air Pollu. Control Assoc. 24: 564–568.

    CAS  Google Scholar 

  • Stephens, E.R. and W.E. Scott. 1962. Relative reactivity of various hydrocarbons in polluted atmospheres. Am. Petroleum Institute Proc. 42: 655–670.

    Google Scholar 

  • Swank, W.T. 1984. Atmospheric contributions to forest nutrient cycling. Water Resour. Bull. 20: 313–321.

    CAS  Google Scholar 

  • Swank, W.T. and G.S. Henderson. 1976. Atmospheric input of some cations and anions to forest ecosystems in North Carolina and Tennessee. Water Resour. Res. 12: 541–546.

    Article  CAS  Google Scholar 

  • Thompson, L.M. and F.R. Troeh. 1978. Soils and Soil Fertility. McGraw–Hill, New York, 516 pp.

    Google Scholar 

  • Tinus, R.W. 1972. CO2 enriched atmosphere speeds growth of ponderosa pine and blue spruce seedlings. Tree Planters’ Notes (1972): 12–15.

    Google Scholar 

  • Troiano, J.J. and I.A. Leone. 1977. Changes in growth rate and nitrogen content of tomato plants after exposure to N02 hr. Phytopathology 67: 1130–1133.

    Article  CAS  Google Scholar 

  • U.S. Department of Agriculture. 1964. Sulfur as Plant Nutrient in the Southern United States. Tech. Bull. No. 1297, Washington, DC, 45 pp.

    Google Scholar 

  • U.S. Environmental Protection Agency. 1986. Air Quality Criteria for Ozone and Other Photochemical Oxidants. Vol. I. Publ. No. EPA-600–8–84–020aF. U.S.E. P.A., Research Triangle Park, NC.

    Google Scholar 

  • Wainwright, M. 1978. Distribution of sulfur oxidation products in soils and on Acer pseudoplatanus L. growing close to sources of atmospheric pollution. Environ. Pollu. 17: 153–160.

    Article  CAS  Google Scholar 

  • Westberg, H.H. and R.A. Rasmussen. 1972. Atmospheric photochemical reactivity of monoterpene hydrocarbons. Chemosphere 4: 163–168.

    Article  Google Scholar 

  • Wellburn, A.R., J. Wilson, and P.H. Aldridge. 1980. Biochemical responses of plants to nitric oxide polluted atmospheres. Environ. Pollu. 22: 219–228.

    Article  CAS  Google Scholar 

  • White, W.H., J.A. Anderson, D.L. Blumenthal, R.B. Húsar, N.V. Gillani, J.D. Huser, and W.E. Wilson Jr. 1976. Formation and transport of secondary air pollutants: Ozone and aerosols in the St. Louis urban plume. Science 194: 187–189.

    CAS  Google Scholar 

  • Will, G.M. and C.T. Youngberg. 1978. Sulfur status of some central OR pumice soils. Soil Sci. Soc. Am. 42: 132–134.

    Article  CAS  Google Scholar 

  • Wolff, G.T., P.J. Lioy, R.E. Meyers, R.T. Cederwell, G.D. Wight, R.E. Pasceri, and R. S. Taylor. 1977. Anatomy of two ozone transport episodes in the Washington, DC to Boston, Mass. corridor. Environ. Sci. Technol. 11: 506–510.

    Article  CAS  Google Scholar 

  • Wong, C.S. 1978. Atmospheric input of carbon dioxide from burning wood. Science 200: 197–200.

    Article  PubMed  CAS  Google Scholar 

  • Woodwell, G.M. 1978. The carbon dioxide question. Sci. Am. 238: 34–43.

    Article  CAS  Google Scholar 

  • Woodwell, G.M., R.H. Whittaker, W.A. Reiners, G.E. Likens, C.C. Delwiche, and D.B. Botkin. 1978. The biota and the world carbon budget, Science 199: 141–146.

    Article  PubMed  CAS  Google Scholar 

  • Wright, R.D. 1974. Rising atmospheric CO2 and photosynthesis of San Bernadino Mountain Plants. Am. Mid. Natural 91: 360–370.

    Article  CAS  Google Scholar 

  • Wright, R.D. and G.M. Woodwell. 1970. Effect of increased CO2 on carbon fixation by a forest. Brookhaven National Laboratory, Publ. No. 1444, Upton, NY, 7 pp.

    Google Scholar 

  • U.S. Department of Agriculture, Forest Service. 1978. Forest Statistics of the U.S. 1977. U.S.D.A., Washington, DC, 133 pp.

    Google Scholar 

  • U.S. Department of Agriculture, Forest Service. 1979. A Report to Congress on the Nation’s Renewable Resources. RPA Assessment and Alternative Program Directions. U.S.D.A., Washington, DC, 209 pp.

    Google Scholar 

  • U.S. Environmental Protection Agency. 1976. Open Space as an Air Resource Management Measure. Vol. II. Design Criteria. Publ. No. EPA-450/3–76–028b. U.S.E.P.A., Research Triangle Park, NC.

    Google Scholar 

  • U.S. Environmental Protection Agency. 1977. National Air Quality and Emissions Trend Report, 1976. U.S.E.P.A. Publ. No. EPA-450/1-77-002, Research Triangle Park, NC.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Smith, W.H. (1990). Class I Summary: Relative Importance of Forest Source and Sink Strength and Some Potential Consequences of These Functions. In: Air Pollution and Forests. Springer Series on Environmental Management. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3296-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3296-4_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7955-6

  • Online ISBN: 978-1-4612-3296-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics