Skip to main content

The Biology of Spinal Fusion

  • Chapter
Spinal Fusion

Abstract

This chapter is devoted to the discussion of the biology and biological principles of spinal fusion. Successful fusion is a critical element in the successful treatment in a large percentage of patients undergoing spinal surgery.1–7 Failed spinal fusions result in significant morbidity of spinal surgery patients. The incidence of pseudarthrosis ranges from 5% to 34% in large series,3,7,8 although generally lower in fusions for idiopathic scoliosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burton CV. The role of spine fusion—Question 4. Spine 1981;6:29.

    Google Scholar 

  2. Burton CV. Causes of failure of surgery on the lumbar spine. Clin Orthop Rel Res 1981;157:191.

    Google Scholar 

  3. Eie N, Solgaard T, Kleppe H. The knee-elbow position in lumbar disc surgery: a review of complications. Spine 1983;8:897.

    PubMed  CAS  Google Scholar 

  4. Farger CA, Freidberg SR. Analysis of failures and poor results of lumbar spine surgery. Spine 1980;5:87.

    Google Scholar 

  5. Frymoyer JW. The role of spinal fusion—question 3. Spine 1981;6:284.

    Google Scholar 

  6. Heithoff KB, Burton CV. CT evaluation of the failed back syndrome. Orthop Clin North Am 1985;16:417.

    PubMed  CAS  Google Scholar 

  7. Lehman TR, LaRocca HS. Repeat lumbar surgery—a review of patients with failure from previous lumbar surgery treated by spinal canal exploration and lumbar spinal fusion. Spine 1981;6(6):615.

    Google Scholar 

  8. DePalma AF. The nature of pseudarthrosis. Clin Orthop 1968;59:113.

    Google Scholar 

  9. Burwell RG. The fate of bone grafts. In: Apley AG, ed. Recent advances in orthopaedics. London: Churchill, 1969:115.

    Google Scholar 

  10. Cruess RL. Healing of bone tendon and ligament. In: Rockwood CA, Green DP, eds. Fractures. Philadelphia: Lippincott, 1984:153.

    Google Scholar 

  11. Nilsson OS, Bauer HCF, Brosjo O, Tornkvist H. Influence of indomethicin on heterotopic bone formation in rats. Importance of length of treatment and of age. Clin Orthop 1986;207:239.

    PubMed  CAS  Google Scholar 

  12. Coventry MB, Scanion PW. The use of radiation to discourage ectopic bone: a nine-year study in surgery about the hip. J Bone Joint Surg [Am] 1981;63:201.

    CAS  Google Scholar 

  13. Freidenstein AJ. Determined and inducible osteogenic precursor cells. In: Sognaes R, Vaughan J, eds. Hard tissue growth, repair, and remineralization. Ciba Foundation Symposium II, New York: Elsevier, 1973:169.

    Google Scholar 

  14. Freidenstein AJ. Precursor cells of mechanocytes. Int Rev Cytol 1976;47:327.

    Google Scholar 

  15. Freidenstein AJ, Chailakhyan RK, Latsinik NV, et al. Stromal cells responsible for transferring the microenvironment of the haemopoietic tissues. Transplantation 1974;17:331.

    Google Scholar 

  16. Freidenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic transplants of bone marrow. Analysis of precursor cells for osteogenic and haemopoietic tissues. Transplantation 1968;6:230.

    Google Scholar 

  17. Urist MR. Bone and bone transplants. In: Urist MR, ed. Fundamental and clinical physiology of bone. Philadelphia: Lippincott, 1980:131.

    Google Scholar 

  18. Goldstein LA. Surgical management of scoliosis. J Bone Joint Surg 1966;48A:167.

    Google Scholar 

  19. Hibbs RA. An operation for progressive spinal deformities. NY State J Med 1911;93:1013.

    Google Scholar 

  20. Moe JH. Methods of correction and surgical technique in scoliosis. Orthop Clin North Am 1972;2:17.

    Google Scholar 

  21. Brown MD, Malinin TI, Davis PB. A roentgenographic evaluation of frozen allografts versus autografts in anterior cervical fusions. Clin Orthop 1976;119:231.

    PubMed  Google Scholar 

  22. Curtis BH. Orthopaedic management of muscular dystrophy and related disorders. American Academy of Orthopaedic Surgeons Instructional Course Lecture, Vol. 19, St. Louis: Mosby, 1970:78.

    Google Scholar 

  23. Allen BL, Ferguson RL. The operative treatment of myelomeningocele spinal deformity-1979. Orthop Clin North Am 1979; 10:845.

    PubMed  Google Scholar 

  24. Prolo DJ, Rodrigo JJ. Contemporary bone graft physiology and surgery. Clin Orthop 1985;200:322.

    PubMed  Google Scholar 

  25. Espersen JO, Buhl M, Eriksen EF, et al. Treatment of cervical disc disease using Cloward’s technique. I. General results, effect of different operative methods and complications in 1,106 patients. Acta Neurochir (Wien) 1984;70(1–2):97.

    CAS  Google Scholar 

  26. Takeda M. Experience in posterior lumbar interbody fusion: unicortical versus bicortical autogenous grafts. Clin Orthop 1985;193:120.

    PubMed  Google Scholar 

  27. Weiland AJ, Moore JR, Daniel RK. Vascularized bone autografts: experience with 41 cases. Clin Orthop 1983;174:87.

    PubMed  Google Scholar 

  28. Dell PC, Burchardt H, Glowczewskie FP. A roentgenographs, biomechanical, and histological evaluation of vascularized and non-vascularized segmental fibular canine autografts. J Bone Joint Surg 1985;67A:105.

    Google Scholar 

  29. Shaffer JW, Fields GA, Goldberg VM, Davy DT. Fate of vascularized and non-vascularized autografts. Clin Orthop 1985;197:32.

    PubMed  Google Scholar 

  30. Weiland AJ, Phillips TW, Randolph MA. Bone grafts: a radiologic, histologic, and biomechanical model comparing autografts, allografts, and free vascularized bone grafts. Plast Reconstr Surg 1984;74:368.

    PubMed  CAS  Google Scholar 

  31. Hubbard LF, Herndon JH, Buonanno AR. Free vascularized fibula transfer for stabilization of the thoracolumbar spine. A case report. Spine 1985;10:89.

    Google Scholar 

  32. Hartman JT, McCarron RF, Robertson WW. A pedicle bone grafting procedure for failed lumbosacral spinal fusion. Clin Orthop 1983;178:223.

    PubMed  Google Scholar 

  33. McBride GG, Bradford DS. Vertebral body replacement with femoral neck allograft and vascularized rib strut graft. A technique for treating post-traumatic kyphosis with neurologic deficit. Spine 1983;8(4):406.

    PubMed  CAS  Google Scholar 

  34. Rose GK, Owen R, Sanderson JM. Transposition of rib with blood supply for the stabilization of spinal kyphosis. J Bone Joint Surg 1975;57B:112.

    Google Scholar 

  35. Bradford DS. Anterior vascular pedicle bone grafting for the treatment of kyphosis. Spine 1980;5:318.

    PubMed  CAS  Google Scholar 

  36. Goujon E. Recherches experimentales sur les proprietes physiologiques de la moelle des os. Journal de F Anatomie et de Physiologie Normales et Pathologiques de l’Homme et des Animaux 1869;6:399.

    Google Scholar 

  37. Senn N. On the healing of aseptic cavities by implantation of antiseptic decalcified bone. Am J Med Sci 1889;98:219.

    Google Scholar 

  38. Pfeiffer CA. Development of bone from transplanted marrow in mice. Anat Rec 1948;102:225.

    PubMed  CAS  Google Scholar 

  39. Burwell RC. Studies on the transplantation of bone. VII. The fresh composite homo-autograft of cancellous bone. An analysis of factors leading to osteogenesis in marrow transplants and in marrow containing bone grafts. J Bone Joint Surg 1964;46B(1):110.

    Google Scholar 

  40. Burwell RC. The function of bone marrow in the incorporation of a bone graft. Clin Orthop 1985;200:125.

    PubMed  Google Scholar 

  41. Freidenstein AJ, Chailakjan RK, Lalykina KS. The development of fibroblast colonies in monolayer culture of guineapig bone marrow and spleen cells. Cell Tissue Kinet 1979;3:393.

    Google Scholar 

  42. Urist MR. Bone: formation by auto induction. Science 1965;150:893.

    PubMed  CAS  Google Scholar 

  43. Urist MR. Surface-decalcified allogeneic bone (SDAB) implants. Clin Orthop 1968;56:37.

    PubMed  CAS  Google Scholar 

  44. Urist MR. New bone formation induced in post fetal life by bone morphogenetic protein. In: Becker RD, ed. Mechanisms of growth control. Springfield: Thomas, 1981:406.

    Google Scholar 

  45. Urist MR, Hay PH, Dubuc F, et al. Osteogenic competence. Clin Orthop 1969;64:194.

    PubMed  CAS  Google Scholar 

  46. Urist MR, Iwata H, Cecotti PL, et al. Bone morphogenesis in implants of insoluble bone gelatin. Proc Natl Acad Sci USA 1973;70:3571.

    Google Scholar 

  47. Urist MR, Huo YK, et al. Purification of bovine bone morphogenetic protein by hydroxyapatite chromatography. Proc Natl Acad Sci USA 1984;82:371.

    Google Scholar 

  48. Urist MR, Lietze A, Dawson E, et al. Beta-tricalcium phosphate delivery system of bone morphogenetic protein. Clin Orthop 1984;187:277.

    PubMed  CAS  Google Scholar 

  49. Urist MR, Lietz A, Mizutani H, et al. Bovine low molecular weight bone morphogenetic protein (BMP) fraction. Clin Orthop 1982;162:219.

    PubMed  CAS  Google Scholar 

  50. Urist MR, Mikulski A, Lietz A. Solubilized and insolu-bilized bone morphogenetic protein. Proc Natl Acad Sci USA 1979;76:1828.

    PubMed  CAS  Google Scholar 

  51. Urist MR, Nakagawa M, Nakata, et al. Experimental myositis ossificans. Arch Pathol Lab Med 1978;102:312.

    PubMed  CAS  Google Scholar 

  52. Urist MR, Nogami H. Morphogenetic substratum for differentiation of cartilage in tissue culture. Nature (London) 1970;225:1051.

    CAS  Google Scholar 

  53. Urist MR, Silverman BF, Buring K, et al. The bone induction principle. Clin Orthop 1967;53:243.

    PubMed  CAS  Google Scholar 

  54. Nogami M, Urist MR. Substrate prepared from bone matrix for chondrogenesis in tissue culture. J Cell Biol 1974;62:510.

    PubMed  CAS  Google Scholar 

  55. Sato K, Urist MR. Induced regeneration of calvaria by bone morphogenetic protein (BMP) in dogs. Clin Orthop 1985;197:301.

    PubMed  CAS  Google Scholar 

  56. Takagi K, Urist MR. The role of bone marrow in bone morphogenetic protein-induced repair of femoral massive diaphyseal defects. Clin Orthop 1982;171:225.

    Google Scholar 

  57. Van de Putte, KA, Urist MR. Osteogenesis in the interior of intramuscular implants of decalcified bone matrix. Clin Orthop 1966;43:257.

    Google Scholar 

  58. Lakasi K, Urist MR. The reaction of the dura to bone morphogenetic protein (BMP) in the repair of skull defects. Ann Surg 1982;196:100.

    Google Scholar 

  59. Nilsson OS, Urist MR, Dawson T, et al. Bone repair induced by bone morphogenetic protein in ulnar defects in dogs. J Bone Joint Surg 1986;68B:635.

    Google Scholar 

  60. Owen M. The origin of bone cells in the post natal organism. Arthritis Rheum 1980;23:1074.

    Google Scholar 

  61. Reddi AH. Bone matrix in the solid state—geometric influence on the differentiation of fibroblasts. In: Lawrence JH, Gotman JW, eds. Advances in biological and medical physics, Vol. 15. New York: Academic Press, 1973:1.

    Google Scholar 

  62. Reddi AH. Cell biology and biochemistry of endochondral bone development. Coll Relat Res 1981;1:209.

    PubMed  CAS  Google Scholar 

  63. Reddi AH. Extracellular matrix and development. In: Piez KA, Reddi AH, eds. Extracellular matrix biochemistry. New York: Elsevier, 1984:375.

    Google Scholar 

  64. Reddi AH. Extracellular matrix dependent local induction of cartilage and bone. J Rheumatol 1983;11:67.

    CAS  Google Scholar 

  65. Reddi AH, Anderson WA. Collagenous bone matrix-induced endochondral ossification and hemopoieses. J Cell Biol 1976;69:557.

    PubMed  CAS  Google Scholar 

  66. Reddi AH, Higgins CB. Biochemical sequences in the transformation of normal fibroblasts in adolescent rats. Proc Natl Acad Sci USA 1972;69:1691.

    Google Scholar 

  67. Sampath TR, De Simone R, Reddi AH. Extracellular matrix derived growth factor. Exp Cell Res 1982;142:460.

    PubMed  CAS  Google Scholar 

  68. Sampath TR, Reddi AH. Role of extracellular matrix components in cartilage and bone induction. UCLA Symposia on Molecular and Cellular Biology 1985;25:293.

    Google Scholar 

  69. Weiss RE, Reddi AH. Role of fibronectin in collagenous matrix-induced mesenchymal cell proliferation and differentiation in vivo. Exp Cell Res 1981;133:243.

    Google Scholar 

  70. Ashton BA, Allen TD, Howlet CR, et al. Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Clin Orthop 1980;151:294.

    PubMed  Google Scholar 

  71. Werntz J, Lane JM, Piez, et al. The repair of segmental bone defects with collagen and marrow. Transactions of the 32nd Orthopaedic Research Society Meeting, 1986:108.

    Google Scholar 

  72. Burwell RG. The function of bone marrow in the incorporation of a bone graft. Clin Orthop 1985;200:125.

    PubMed  Google Scholar 

  73. Tomford WW, Starkweather RJ, Goldman Mh. A study of the incidence of infection in the use of banked allograft bone. J Bone Joint Surg 1981;63:244.

    PubMed  CAS  Google Scholar 

  74. Friedlaender GE, Mankin HJ. Bone banking: current methods and suggested guidelines. In: Instructional course lectures, Vol. 30. The American Academy of Orthopaedic Surgeons. St. Louis: Mosby, 1981:36.

    Google Scholar 

  75. Bos GD, Goldberg VM, Zika JM, Hieple KG, Powell AE. Immune responses of rats to frozen bone allografts. J Bone Joint Surg 1983;65A:239.

    Google Scholar 

  76. Chalmers J. Transplantation immunity in bone homografting. J Bone Joint Surg 1959;41B(1):160.

    Google Scholar 

  77. Friedlaender GE, Strong DM, Sell KW. Studies on antigenicity of bone. I. Freeze-dried and deep frozen allografts in rabbits. J Bone Joint Surg 1976;58A:854.

    Google Scholar 

  78. Halloran PF, Lee EH, Ziv I, et al. Orthotopic bone transplantation in mice. II. Studies of the alloantibody response. Transplantation (Baltimore) 1979;27:420–426.

    CAS  Google Scholar 

  79. Langer F, Czitrom A, Pritzker KP, Gross AE. The immunogenicity of fresh and frozen allograft bone. J Bone Joint Surg 1975;57A:216.

    Google Scholar 

  80. Muscolo DL, Kawai S, Ray RD. Cellular and humoral immune response analysis of bone-allografted rats. J Bone Joint Surg 1976;58A:826.

    Google Scholar 

  81. Friedlaender GE, Strong DM, Sell KW. Studies of the antigenicity of bone. II. Donor-specific anti-HLA antibodies in human recipients of freeze-dried allografts. J Bone Joint Surg 1984;66A:107.

    Google Scholar 

  82. Lee EH, Langer F, Halloran P, Gross AE, Ziv I. The immunology of osteochondral and massive allografts. Transactions of the 32nd Orthopaedic Research Society Meeting, 1986;4:61.

    CAS  Google Scholar 

  83. Pelker RR, Friedlaender GE, Markham TC. Biomechanical properties of bone allografts. Clin Orthop 1983;174:54.

    PubMed  Google Scholar 

  84. Stevenson S. The immune response to osteochondral allografts in dogs. J Bone Joint Surg 1987;69A:573.

    Google Scholar 

  85. Bos GD, Goldberg VM, Powell AE, Heiple KG, Zika JM. The effect of histocompatibility matching on canine frozen bone allografts. J Bone Joint Surg 1983;65A:89.

    Google Scholar 

  86. Stevenson S, Hohn RB, Templeton JW. Effects of tissue antigen matching on the healing of fresh cancellous bone allografts in dogs. Am J Vet Res 1983;44:201.

    PubMed  CAS  Google Scholar 

  87. Muscolo DL, Caletti E, Schajowicz F, Araujo ES, Makino A. Tissue typing in human massive allografts of frozen bone. J Bone Joint Surg 1987;69A:583.

    Google Scholar 

  88. Cornell CN, Lane JM, Nottebaert M, et al. The effect of ethylene oxide sterilization upon the bone inductive properties of demineralized bone matrix. Transactions of the 32nd Orthopaedic Research Society Meeting, 1986.

    Google Scholar 

  89. Urist MR, Dawson E. Intertransverse process fusion with the aid of chemosterilized autolyzed allogeneic (AAA) bone. Clin Orthop 1981;154:97.

    PubMed  Google Scholar 

  90. Oikarinen J. Experimental spinal fusion with decalcified bone matrix and deep-frozen allogeneic bone in rabbits. Clin Orthop 1982;162:210.

    PubMed  Google Scholar 

  91. Bowen JR, Angus PD, Huxster RR, MacEwen GD. Posterior spinal fusion without blood replacement in Jehovah’s Witnesses. Clin Orthop 1985;198:284.

    PubMed  Google Scholar 

  92. Stabler CL, Eismont FJ, Brown MD, Green BA, et al. Failure of posterior cervical fusions using cadaveric bone graft in children. J Bone Joint Surg 1985;67A(3):371.

    Google Scholar 

  93. Collis JS. Total disc replacement: a modified posterior lumbar interbody fusion. Report of 750 cases. Clin Orthop 1985;193:64.

    PubMed  Google Scholar 

  94. Aurori BF, Weierman RJ, Lowell HA, et al. Pseudarthrosis after spinal fusion for scoliosis. A comparison of autogeneic and allogeneic bone grafts. Clin Orthop 1985;199:153.

    PubMed  Google Scholar 

  95. McCarthy RE, Peek RD, Morrissy RT, Hough AJ. Allograft bone in spinal fusion for paralytic scoliosis. J Bone Joint Surg 1986;68A:370.

    Google Scholar 

  96. Malanin TI, Rosomoff HL, Sutton CH. Human cadaver femoral head homografts for anterior cervical spine fusions. Surg Neurol 1977;7:249.

    Google Scholar 

  97. Schneider JR, Bright RW. Anterior cervical fusion using preserved bone allografts. Transplant Proc 1976;8(Suppl 1):73.

    PubMed  CAS  Google Scholar 

  98. Gepstein R, Nakamura K, Latta M, et al. Posterior spinal fusion with various types of bone grafts. Transactions of the 32nd Orthopaedic Research Society Meeting, 1986;11:203.

    Google Scholar 

  99. Nasca RJ, Whelchel JD. Use of cyropreserved bone in spinal surgry. Spine 1987;12:222.

    PubMed  CAS  Google Scholar 

  100. Siqueira EB, Kranzler LI. Cervical interbody fusion using calf bone. Surg Neurol 1982;18(1):37.

    PubMed  CAS  Google Scholar 

  101. Salama R. Xenogeneic bone grafting in humans. Clin Orthop 1983;174:113.

    PubMed  Google Scholar 

  102. DeBowes RM, Grant BD, Bagby GW, et al. Cervical vertebral interbody fusion on the horse: a comparative study of bovine xenografts and autografts supported by stainless steel baskets. Am J Vet Res 1984;45(1):191.

    Google Scholar 

  103. McMurray GN. The evaluation of Kiel bone in spinal fusions. J Bone Joint Surg 1982;64B(1):101.

    Google Scholar 

  104. Whitehill R, Wilhelm CE, Moskal, et al. Posterior strut fusions to enhance immediate postoperative cervical stability. Spine 1986;11:6.

    PubMed  CAS  Google Scholar 

  105. Bradford DS. Instrumentation of the lumbar spine. An overview. Clin Orthop 1986;203:209.

    PubMed  Google Scholar 

  106. Tuli SN, Singh AD. The osteoinductive property of decalcified bone matrix. An experimental study. J Bone Joint Surg 1978;60B:116.

    Google Scholar 

  107. Harakas NK. Demineralized bone matrix-induced osteogenesis. Clin Orthop 1984;188:239.

    PubMed  Google Scholar 

  108. Bolander ME, Balian G. The use of demineralized bone matrix in the repair of segmental defects. J Bone Joint Surg 1986;68A:1264.

    Google Scholar 

  109. Einhorn TA, Lane JM, Burstein AH, et al. The healing of segmental bone defects induced by demineralized bone matrix. A radiographic and biomechanical study. J Bone Joint Surg 1984;66A:274.

    Google Scholar 

  110. Gepstein R, Weiss RE, Saba K, Hallel T. Bridging large defects in bone by demineralized bone matrix in the form of a powder. J Bone Joint Surg 1987;69A:984.

    Google Scholar 

  111. Lindholm TS, Nilsson OS, Lindholm TC. Extracellular and intraskeletal new bone formation induced by demineralized bone matrix combined with bone marrow cells. Clin Orthop 1982;171:251.

    PubMed  Google Scholar 

  112. Wittbjer J, Palmer B, Rohlin M, Thorngren KG. Osteogenic activity in composite grafts of demineralized compact bone and marrow. Clin Orthop 1983;173:229.

    PubMed  Google Scholar 

  113. Muthukumaran N, Reddi AH. Bone matrix-induced local bone induction. Clin Orthop 1985;200:159.

    PubMed  CAS  Google Scholar 

  114. Glowacki J, Kaban LB, Murray JE, et al. Application of the biological principle of induced osteogenesis for craniofacial defects. Lancet 1981;1:959.

    PubMed  CAS  Google Scholar 

  115. Glowacki J, Altobelli D, Mulliken JB. Fate of mineralized and demineralized osseous implants in cranial defects. Calcif Tissue Int 1981;30:71.

    Google Scholar 

  116. Glowacki J, Mulliken JB. Demineralized bone implants. Clin Plast Surg 1985;12(2):233.

    PubMed  CAS  Google Scholar 

  117. Mulliken JB, Glowacki J. Induced osteogenesis for the repair and reconstruction of the craniofacial region. Plast Reconstr Surg 1980;65:553.

    PubMed  CAS  Google Scholar 

  118. Mulliken JB, Kaban LB, Glowacki J. Induced osteogenesis—the biologic principle and clinical applications. J Surg Res 1984;37:487.

    PubMed  CAS  Google Scholar 

  119. Flatley TJ, Lynch KL, Benson MD. Tissue response to implants of calcium phosphate ceramic in rabbit spine. Clin Orthop 1983;179:246.

    PubMed  Google Scholar 

  120. Ferraro JW. Experimental evaluation of ceramic calcium phosphate as a substitute for bone grafts. Plast Reconstr Surg 1979;63(5):634.

    PubMed  CAS  Google Scholar 

  121. Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop 1981;157:259.

    PubMed  CAS  Google Scholar 

  122. Jarcho M, Kay JF, Gumaer KI, et al. Tissue cellular and subcellular events at bone-ceramic hydroxyapatite interface. J Bioeng 1977;1:79.

    PubMed  CAS  Google Scholar 

  123. Holmes RE, Bucholz RW, Mooney V. Porous hydroxyapatite as a bone graft substitute in diaphyseal defects: a histometric study. J Orthop Res 1987;5:114.

    PubMed  CAS  Google Scholar 

  124. Rejda BV, Pellan JGJ, de Groot K. Tricalcium phosphate as a bone substitute. J Bioeng 1977;1:93.

    PubMed  CAS  Google Scholar 

  125. Hoosendoorn HA, Renooji W, Akkermans LMA, et al. Long-term study of large ceramic implants (porous hydroxyapatite) in dog femora. Clin Orthop 1984;187:281.

    Google Scholar 

  126. Cook SD, Reynolds MC, Whitecloud TS, et al. Evaluation of hydroxyapatite graft materials in canine cervical spine fusions. Spine 1986;11(4):305.

    PubMed  CAS  Google Scholar 

  127. Waisbrod H, Gerbershagen HU. A pilot study of the value of ceramics for bone replacement. Arch Orthop Trauma Surg 1986;105(5):298.

    PubMed  CAS  Google Scholar 

  128. Patka P. Bone replacement by calcium phosphate ceramics: an experimental study. Thesis, Univ. of Amsterman. Amsterdam: Free University Press, 1984.

    Google Scholar 

  129. Muschler GM, Lane JM, Werntz J, et al. The use of composite bone graft materials in a segmental femoral defect model in the rat. Inaugural Meeting of the International Society for Fracture Repair, Helsinki, September 2, 1987.

    Google Scholar 

  130. Moore DC, Chapman MW, Manske D. The evaluation of a biphasic calcium phosphate ceramic for use in grafting long-bone diaphyseal defects. J Orthop Res 1987;5:356.

    PubMed  CAS  Google Scholar 

  131. Canalis E. Effect of growth factors on bone cell replication and differentiation. Clin Orthop 1985;193:246.

    PubMed  CAS  Google Scholar 

  132. Canalis E The hormonal and local regulation of bone formation. 1983; Endocr Rev 42:62.

    Google Scholar 

  133. Urist ME, Delange RJ, Finerman GAM. Bone cell differentiation and growth factors. Science 1983;220:680.

    PubMed  CAS  Google Scholar 

  134. Lindholm TS, Urist MR. A quantitative analysis of new bone formation by induction in composite graft of bone marrow and bone matrix. Clin Orthop 1956;150:288.

    Google Scholar 

  135. Takagi K, Urist MR. The role of bone marrow in bone morphogenetic protein-induced repair of massive femoral diaphyseal defects. Clin Orthop 1982;171:224.

    PubMed  Google Scholar 

  136. Takagi K, Urist MR. The reaction of the dura to bone morphogenetic protein (BMP) in repair of skull defects. Ann Surg 1982;196:100.

    PubMed  CAS  Google Scholar 

  137. Urist MR. Bone formation by auto-induction. Science 1965;150:893.

    PubMed  CAS  Google Scholar 

  138. Urist MR, Granstein L, Nogami H, Swenson L, Murphy R. Transmembrane bone morphogenesis across multiple walled chambers. New evidence of a diffusible bone morphogenetic property. Arch Surg 1977;112:612.

    PubMed  CAS  Google Scholar 

  139. Lovell T, Dawson EG. BMP augmentation of experimental spinal fusion. Transactions of the 32nd Orthopaedic Research Society Meeting, 1986.

    Google Scholar 

  140. Dickhaut S, DeLee JC, Page CP. Nutritional status: importance in predicting wound-healing after amputation. J Bone Joint Surg 1984;66A:71.

    Google Scholar 

  141. Einhorn TA, Bonnarens F, Burstein AH. The contributions of dietary protein and mineral to the healing of experimental fractures. J Bone Joint Surg 1986;68A:1389.

    Google Scholar 

  142. Jensen JE, Jensen TG, Smith TK, et al. Nutrition in orthopaedic surgery. J Bone Joint Surg 1982;64A(9):1263.

    Google Scholar 

  143. Nilsson OS, Bauer HCF, Brostrom L-A. Methotrexate effects on heterotopic bone in rats. Acta Orthop Scand 1987;58:47.

    PubMed  CAS  Google Scholar 

  144. Conaty JP, Mongan JL. Cervical fusion in rheumatoid arthritis. J Bone Joint Surg 1981;63A(8):1218.

    Google Scholar 

  145. Bryan WJ, Inglis AE, Sculco TP, Ranawat CS. Methylme-thacrylate stabilization for enhancement of posterior cervical arthrodesis in rheumatoid arthritis. J Bone Joint Surg 1982;64A:1045.

    Google Scholar 

  146. Clark CR, Keggi KJ, Panjabi MM. Methylmethacrylate stabilization of the cervical spine. J Bone Joint Surg 1984;66A(1):40.

    Google Scholar 

  147. Koskinen EVS. The effect of growth hormone and thyrotropin on human fracture healing. Acta Orthop Scand (Suppl) 1963;62:7.

    Google Scholar 

  148. Udupa KN, Gupta LP. The effect of growth hormone and thyroxine in healing of fracture. Indian J Med Res 1965;53:623.

    PubMed  CAS  Google Scholar 

  149. Koskinen EVS. The influence of hormonal treatment and orchiectomy, oophorectomy, and thyroidectomy on experimental fractures. Acta Orthop Scand (Suppl) 1965;80:7.

    Google Scholar 

  150. Barth R, McDonnell J, Muschler GF, Zimmerman P, Lane JM. The effect of thyroid hormone on bone healing in a segmental defect model. Transactions of the 32nd Orthopaedic Research Society Meeting, 1986.

    Google Scholar 

  151. Aprin H, Bowen JR, MacEwen GD, Hall JE. Spinal fusion in patients with spinal muscular atrophy. J Bone Joint Surg 1982;64A:1179.

    Google Scholar 

  152. Swank S, Brown JC, Perry RE. Spinal fusion in Duchennes muscular dystrophy. Spine 1982;7:484.

    PubMed  CAS  Google Scholar 

  153. Bunch WH. Muscular dystrophy. In: Hardy JH, ed. Spinal deformity in neurological and muscular disorders. St. Louis: Mosby, 1974:92.

    Google Scholar 

  154. Bassett CAL, Mitchell SN, Gaston SR. Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. J Bone Joint Surg 1981;63A:511.

    Google Scholar 

  155. Paterson D. Treatment of nonunion with constant direct current: a totally implantable system. Orthop Clin North Am 1984;15:47.

    PubMed  CAS  Google Scholar 

  156. Bassett CAL, Mitchell SN, Gaston SR. Pulsing electromagnetic field treatment in ununited fractures and failed arthrodeses. JAMA 1982;247:263.

    Google Scholar 

  157. Bassett CAL. The development and application of pulsed electromagnetic fields (PEMF’s) for ununited fractures and arthrodeses. Orthop Clin North Am 1984;15:61.

    PubMed  CAS  Google Scholar 

  158. Bassett CA, Pilla AA, Pawluk RJ. A non-operative salvage of surgically resistant pseudarthrosis and non-union by pulsing electromagnetic fields. Clin Orthop 1977;124:128.

    PubMed  Google Scholar 

  159. Simmons JW. Treatment of failed posterior lumbar interbody fusion (PLIF) of the spine with pulsing electromagnetic fields. Clin Orthop 1985;193:127.

    PubMed  Google Scholar 

  160. Kahanovitz, N, Arnoczky SP, Hulse D, Shires PK. The effect of postoperative electromagnetic pulsing on canine posterior spinal fusions. Spine 1984;9(3):273.

    PubMed  CAS  Google Scholar 

  161. Nerubay J, Marganit B, Bubis JJ, et al. Stimulation of bone formation by electrical current on spinal fusion. Spine 1986;11(2):167.

    PubMed  CAS  Google Scholar 

  162. Rothman RH, Klemek JS, Toton JJ. The effect of iron deficiency anemia on fracture healing. Clin Orthop 1971;77:276.

    PubMed  CAS  Google Scholar 

  163. Bell GR, Gurd AR, Orlowski JP, Andrish, JT. The syndrome of inappropriate antidiuretic-hormone secretion following spinal fusion. J Bone Joint Surg 1986; 68A: 720.

    Google Scholar 

  164. Brown CW, Orme TJ, Richardson HD. The rate of pseudarthrosis (surgical non-union) in patients who are smokers and patients who are non-smokers. Spine 1986;11:942.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Muschler, G.F., Lane, J.M., Dawson, E.G. (1990). The Biology of Spinal Fusion. In: Cotler, J.M., Cotler, H.B. (eds) Spinal Fusion. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3272-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3272-8_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7944-0

  • Online ISBN: 978-1-4612-3272-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics