Modular Disjunction in Schizophrenia: A Framework for a Pathological Psychophysiology

  • John M. Cleghorn
  • Martin L. Albert
Part of the International Perspectives Series: Psychiatry, Psychology, and Neuroscience book series

Abstract

This chapter is an attempt to synthesize contemporary research data from neurobiology, neuropsychology, and cognitive science for the purpose of understanding schizophrenic psychosis. Our principal conclusions constitute a framework for a pathological psychophysiology of schizophrenia. Because we consider variability or a lack of neurocognitive modulation to be a fundamental characteristic of schizophrenic behaviour, our framework focuses on explanations of this variability. We suggest that although individual modules of cognitive and emotional function may be intact in schizophrenia, messages are inappropriately sent to parts of the brain not specialized for the required information. Neural networks that form the substrate for cognitive or emotional modules are activated or inactivated in a disorganized or inappropriate temporal sequence, and, thus, desynchronization (“modular disjunction”) of widely distributed neural systems develops, causing the signs and symptoms of schizophrenic psychosis.

Keywords

Dopamine Dementia Influenza Schizophrenia Norepinephrine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cleghorn JM: A neurodiagnostic approach to schizophrenia. Can J Psychiatry 1988;33:555–561.PubMedGoogle Scholar
  2. 2.
    Anscombe R: The disorder of consciousness. Schizophr Bull 1987;13:241–260.Google Scholar
  3. 3.
    Hoffman RE: Verbal hallucinations and language production processes in schizophrenia. Behav Brain Sci 1986;9:503–548.CrossRefGoogle Scholar
  4. 4.
    Frith CD, Done DJ: Towards a neuropsychology of schizophrenia. Br J Psychiatry 1988;153:437–443.PubMedCrossRefGoogle Scholar
  5. 5.
    Ciompi L: Is there really a schizophrenia? The long-term course of psychotic phenomena. Br J Psychiatry 1984;145:636–640.PubMedCrossRefGoogle Scholar
  6. 6.
    Vaillant GE: The natural history of the remitting schizophrenics. Am J Psychiatry 1963;120:367–376.PubMedGoogle Scholar
  7. 7.
    Shakow D: Segmental set: a theory of the formal psychological deficit in schizophrenia. Arch Gen Psychiatry 1962;6:1–17.PubMedGoogle Scholar
  8. 8.
    Shakow D: Some Psychophysiological Aspects of Schizophrenia. First Rochester International Conference on Schizophrenia, 1972Google Scholar
  9. 9.
    Shakow D: Some observations on the psychology (and some fewer, on the biology) of schizophrenia. J Nerv Mental Dis 1971;153:300–316.CrossRefGoogle Scholar
  10. 10.
    Cleghorn JM, Brown GM, Brown PJ, et al: Growth hormone responses to apomorphine HC1 in schizophrenic patients on drug holidays and at relapse. Br J Psychiatry 1983;142:482–488.PubMedCrossRefGoogle Scholar
  11. 11.
    Brown GM, Cleghorn JM, Kaplan RD, et al: Longitudinal growth hormone studies in schizophrenia. Psychiatry Res 1988;24:123–136.PubMedCrossRefGoogle Scholar
  12. 12.
    Vandervelde CD: Variability of schizophrenia: reflection of a regulatory disease. Arch Gen Psychiatry 1976;33:489–496.Google Scholar
  13. 13.
    Van Kammen D, Doherty JP, Marder SR, et al: Long-term pimozide pre- treatment differentially affects behavioral responses to dextroamphetamine in schizophrenia. Arch Gen Psychiatry 1982;39:275–281.PubMedGoogle Scholar
  14. 14.
    Fodor JA: Precis of the modularity of mind. Behav Brain Sci 1985;8:1–42.CrossRefGoogle Scholar
  15. 15.
    Gardner H: Frames of Mind: The Theory of Multiple Intelligences. New York, Basic Books, 1985.Google Scholar
  16. 16.
    Gardner H: The Mind’s New Science. New York, Basic Books, 1985.Google Scholar
  17. 17.
    Newcombe F: Neuropsychology qua interface. J Clin Experimental Neuropsychology 1986;7:663–681.CrossRefGoogle Scholar
  18. 18.
    Posner MI, Petersen, SE, Fox PT, et al: Localization of cognitive operations in the human brain. Science 1988;240:1627–1631.PubMedCrossRefGoogle Scholar
  19. 19.
    Gazzaniga M: The Social Brain. New York, Basic Books, 1985.Google Scholar
  20. 20.
    Kovelman JA, Scheibel AB: Biological substrates of schizophrenia. Acta Neurolog Scand 1986;73:1–32.CrossRefGoogle Scholar
  21. 21.
    Andrews HB, House AO, Cooper JE, et al: The prediction of abnormal evoked potentials in schizophrenic patients by means of symptom pattern. Br J Psychiatry 1986;147:46–50.CrossRefGoogle Scholar
  22. 22.
    Rutter DR: Language in schizophrenia: the structure of monologues and conversations. Br J Psychiatry 1985;146:399–400.PubMedCrossRefGoogle Scholar
  23. 23.
    Andreasen NC, Hoffman R, Grove W: Language abnormalities in schizophrenia, in Seeman M. Menuck M (eds): New Perspectives in Schizophrenia. London, Heath, 1984.Google Scholar
  24. 24.
    Bartolucci G: Nonverbal disturbances attributed to the schizophrenic psychoses. Comp Psychiatry 1984;25:491–502.CrossRefGoogle Scholar
  25. 25.
    Feinberg TE, Rifkin A, Schaffer C, et al: Facial discrimination and emotional recognition in schizophrenia and affective disorders. Arch Gen Psychiatry 1986;43:276–279.PubMedGoogle Scholar
  26. 26.
    Scheflen AE: Levels of Schizophrenia. New York, Bruner/Mazel, 1981.Google Scholar
  27. 27.
    Wynne LC, Singer MT: Thought disorder and family relations of schizophrenics: II. A classification of forms of thinking. Arch Gen Psychiatry 1963;9:199–206.PubMedGoogle Scholar
  28. 28.
    Wagener DK, Hogarty GE, Goldstein M, et al: Information processing and communication deviance in schizophrenic patients and their mothers. Psychiatry Res 1986;18:365–377.PubMedCrossRefGoogle Scholar
  29. 29.
    Lecours AR: The language of psychotics and neurotics, in Lecours AR, Lhermitte F, Bryans B (eds): Aphasiology. New York, Saunders, 1983.Google Scholar
  30. 30.
    Bartolucci GL, Fine J: The frequency of cohesion weakness in psychiatric syndromes. Applied Psycholinguistics 1987;8:67–74.CrossRefGoogle Scholar
  31. 31.
    Gould LH: Auditory hallucinations in subvocal speech. J Nerv Mental Dis 1949;109:418–427.CrossRefGoogle Scholar
  32. 32.
    Bick PA, Kinsbourne M: Auditory hallucinations and subvocal speech in schizophrenic patients. Am J Psychiatry 1987;144:222–225.PubMedGoogle Scholar
  33. 33.
    Frith CD: The positive and negative symptoms of schizophrenia reflect impairments in the perception and initiation of action. Psych Med 1987;17:631–648.CrossRefGoogle Scholar
  34. 34.
    Sandson J, Albert ML: Varieties of perseveration. Neuropsychologia 1984;22:715–732.Google Scholar
  35. 35.
    Baribeau J, Perton T, Gosselin JY: A neurophysiological evaluation of ab¬normal information processing. Science 1983;219:874–876.CrossRefGoogle Scholar
  36. 36.
    Saccuzzo DP, Braff DL: Information-processing abnormalities: trait- and state-dependent components. Schizophr Bull 1986;12:447–459.PubMedGoogle Scholar
  37. 37.
    Knight RT: Converging models of cognitive deficit in schizophrenia, in Spaulding WD, Cole JK (eds): Theories of Schizophrenia and Psychosis. Lincoln, University of Nebraska Press, 1984.Google Scholar
  38. 38.
    Pritchard WS: Cognitive event-related potential correlates of schizophrenia. Psych Bull 1986;86:43–66.CrossRefGoogle Scholar
  39. 39.
    Zubin J: Negative symptoms: are they indigenous to schizophrenia? Schizophr Bull 1985;11:461–470.PubMedGoogle Scholar
  40. 40.
    Morstyn R, Duffy FH, McCarley RW: Altered P300 topography in schizophrenia. Arch Gen Psychiatry 1983;40:729–734.PubMedGoogle Scholar
  41. 41.
    Holzman PS. Eye movement dysfunctions and psychoses. Int Rev Neurobiology 1985;27:179–225.CrossRefGoogle Scholar
  42. 42.
    Kaplan RD, Cleghorn J, Brown G, et al: Clinical and regional cerebral glucose metabolism correlates of neuropsychological deficits in acutely ill and ambulatory schizophrenic men. J Clin Exp Neuropsychol 1988; 1:20.Google Scholar
  43. 43.
    Asarnow RF, Steffy RA, MacCrimmon DJ, et al: An attentional assessment of foster children at risk for schizophrenia. J Abnorm Psychol 1977,86:267.PubMedCrossRefGoogle Scholar
  44. 44.
    Asarnow RF, MacCrimmon DJ: Residual performance deficit in clinically remitted schizophrenics: A marker for schizophrenia? J Abnorm Psychol 1978:87:597–608.PubMedCrossRefGoogle Scholar
  45. 45.
    Asarnow RF, MacCrimmon DJ: Attention/information-processing, neuropsychological functioning, and thought disorder during the acute and partial recovery phases of schizophrenia: A longitudinal study. Psychiatry Res 1982;7:309.PubMedCrossRefGoogle Scholar
  46. 46.
    Nuechterlein KH, Dawson ME: Information processing and attentional functioning in the developmental course of schizophrenic disorders. Schizophr Bull 1984;10:160–203.PubMedGoogle Scholar
  47. 47.
    Kristofferson MW: Shifting attention between modalities: a comparison of schizophrenics and normals. J Abnormal Psych 1967;72:388–394.CrossRefGoogle Scholar
  48. 48.
    Allen LG: The attention switching model: implications for research in schizophrenia, in Wynne LC, Cromwell RL, Matthysse S (eds): The Nature of Schizophrenia. New York, John Wiley & Sons, 1978.Google Scholar
  49. 49.
    Alpert M: The signs and symptoms of schizophrenia. Comp Psychiatry 1985;26:103–112.CrossRefGoogle Scholar
  50. 50.
    Seidman LJ: Schizophrenia and brain dysfunction: an integration of recent neurodiagnostic findings. Psych Bull 1983;94:195–238.CrossRefGoogle Scholar
  51. 51.
    Shagass C: Contingent negative variation and other slow potentials in adult psychiatry, in Hughes JR, Wilson WP (eds): EEG and Evoked Potentials in Psychiatry and Behavioral Neurology. New York, Butterworths, 1983.Google Scholar
  52. 52.
    Calloway E, Naghdi S: An information processing model of schizophrenia. Arch Gen Psychiatry 1982;39:339–347.Google Scholar
  53. 53.
    Posner MI: Hierarchical distributed networks in the neuropsychology of selective attention, in Caramazza A (ed): Advances in Cognitive Neuropsychology. New York, Erlbaum Associates, 1986.Google Scholar
  54. 54.
    Mesulam M-M: Principles of Behavioral Neurology. Philadelphia, F.A. Davis, 1985.Google Scholar
  55. 55.
    Goldman-Rakic PS: Topography of cognition: parallel distributed cortical networks in primate association cortex. Ann Rev Neurosci 1988; 11:137–156.PubMedCrossRefGoogle Scholar
  56. 56.
    Cleghorn JM, Garnett ES, Nahmias C, et al: Increased frontal and reduced parietal glucose metabolism in acute untreated schizophrenia. Psychiatry Res, 1989;28:119–133.PubMedCrossRefGoogle Scholar
  57. 57.
    Szechtman H, Nahmias C, Garnett ES, et al: Effect of neuroleptics on altered cerebral glucose metabolism in schizophrenia. Arch Gen Psychiatry 1988;45:523–532.PubMedGoogle Scholar
  58. 58.
    Wiesel FA, Wik G, Sjorgen I, et al: Regional brain glucose metabolism in drug free schizophrenic patients and clinical correlates. Acta Psychiatr Scand 1987;76:628–641.PubMedCrossRefGoogle Scholar
  59. 59.
    Kishimoto H, Kuwahara H, Ohno S, et al: Three subtypes of chronic schizophrenia identified using 11 C-glucose positron emission tomography. Psychiatry Res 1987;21:285–292.PubMedCrossRefGoogle Scholar
  60. 60.
    Weinberger DR, Berman KF, Zee RF: Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. Arch Gen Psychiatry 1986;43:114–135.PubMedGoogle Scholar
  61. 61.
    Berman KF, Weinberger DR, Shelton RC, et al: A relationship between anatomical and physiological brain pathology in schizophrenia: lateral cerebral ventricular size predicts cortical blood flow. Am J Psychiatry 1987; 144:1277–1282.PubMedGoogle Scholar
  62. 62.
    Gur RE, Skolnick BE, Gur RC, et al: Brain function in psychiatric disorders. Arch Gen Psychiatry 1983;40:1250–1254.PubMedGoogle Scholar
  63. 63.
    Holcomb HH, Semples WE, Birchsbaum MS, et al: Evolved potential and brain metabolism correlations, abstract. Washington, DC, American Psychiatric Association Press, 1986.Google Scholar
  64. 64.
    Clark CM, Kessler R, Buchsbaum MS, et al: Correlational methods for determining regional coupling of cerebral glucose metabolism: a pilot study. Biol Psychiatry 1984;19:663–678.PubMedGoogle Scholar
  65. 65.
    Volkow ND, Wolf AP, Brodie JD, et al: Brain interactions in chronic schizophrenics under resting and activation conditions. Schizophr Res 1988;1:47–54.PubMedCrossRefGoogle Scholar
  66. 66.
    Kennedy D: The control of output by central neurons, in Brazier MAB (ed): The Interneuron. Los Angeles, University of California Press, 1969.Google Scholar
  67. 67.
    Mountcastle VB, Lynch JC, Georgopoulos A, et al: Posterior parietal association cortex of the monkey: command functions for operations within extra- personal space. J Neurophysiol 1975;38:871–908.PubMedGoogle Scholar
  68. 68.
    Nauta WJH: Circuitous connections linking cerebral cortex, limbic system, and corpus striatum, in Doane BK, Livingstone KE (eds): The Limbic System. New York, Raven Press, 1986.Google Scholar
  69. 69.
    McKenzie JS, Kemin RI, Wilcock L: The Basal Ganglia, Structure and Function. New York, Plenum Press, 1984.Google Scholar
  70. 70.
    Manshreck TC, Maher BA, Waller NG, et al: Deficient motor synchrony in schizophrenic disorders: clinical correlates. Biol Psychiatry 1985;20:990–1002.CrossRefGoogle Scholar
  71. 71.
    Swerdlow NR, Koob GF: Dopamine, schizophrenia, mania and depression: toward a unified hypothesis of cortical, striatal-pallido-thalamic function. Behav Brain Sci 1987;10:197–208.CrossRefGoogle Scholar
  72. 72.
    Oke AF, Adams RN: Elevated thalamic dopamine: possible link to sensory dysfunctions in schizophrenia. Schizophr Bull 1987;13:589–604.PubMedGoogle Scholar
  73. 73.
    Hornykiewicz O: Brain catecholamines in schizophrenia—A good case for noradrenaline. Nature 1982;299:454–456.CrossRefGoogle Scholar
  74. 74.
    Iversen S, Iversen L: Behavioural Pharmacology. London, Oxford Univesity Press, 1984.Google Scholar
  75. 75.
    Antelman SM, Caggiula AR: Norepinephrine-dopamine interactions and behavior. Science. 1977;195:646–653.PubMedCrossRefGoogle Scholar
  76. 76.
    Oades RD: The role of noradrenaline in tuning and dopamine in switching between signals in the CNS. Neurosci Biobehav Rev 1985;9:261–282.PubMedCrossRefGoogle Scholar
  77. 77.
    Bruto V, Kokkinidis L, Anisman H: Attenuation of perseverative behavior after repeated amphetamine treatment: tolerance or attentional deficits? Pharmacol Biochem Behav 1983;19:497–504.PubMedCrossRefGoogle Scholar
  78. 78.
    Kokkinidis L, Anisman H: Amphetamine models of paranoid schizophrenia: an overview and elaboration of animal experimentation. Psych Bull 1980;88:551–579.CrossRefGoogle Scholar
  79. 79.
    Ellinwood EH, Sudilovsky A: Chronic amphetamine intoxication: behavioral model of psychoses, in Cole JO, Freedman AM, Friedhoff AJ (eds): Psychopathology and Psychopharmacology. Baltimore, Johns Hopkins University Press, 1973.Google Scholar
  80. 80.
    Robertson A, MacDonald C: Opposite effects of sulpiride and metoclopramide on amphetamine-induced stereotypy. Eur J Pharmacol 1985;109:81–89.PubMedCrossRefGoogle Scholar
  81. 81.
    Rebec GV, Bashore TR: Critical issues in assessing the behavioral effects of amphetamine. Neurosci Biobehav Rev 1984;8:153–159.PubMedCrossRefGoogle Scholar
  82. 82.
    Matthysse S: Animal models in psychiatric research, in van Ree JM, Matthysse S (eds): Progress in Brain Research. Amsterdam, Elsevier Science Publishers, 1986.Google Scholar
  83. 83.
    Szechtman H, Ornstein K, Teitlebaum P, et al: The morphogenesis of stereotyped behaviour induced by the dopamine receptor agonist apomorphine in the laboratory rat. Neuroscience 1985;14:783–798.PubMedCrossRefGoogle Scholar
  84. 84.
    Ciompi L: Is there really a schizophrenia?—The long-term course of psychotic phenomena. Br J Psychiatry 1984;145:636–640.PubMedCrossRefGoogle Scholar
  85. 85.
    Ellinwood EH: Amphetamine psychosis. I. Description of the individuals and process. J Nerv Mental Dis 1967;44:273–283.Google Scholar
  86. 86.
    Friedhoff AJ: Restitutive processes in the regulation of behavior, in Alpert M (ed): Controversies in Schizophrenia. New York, Guilford Press, 1985.Google Scholar
  87. 87.
    Cleghorn JM, Brown GM, Brown PJ, et al: Longitudinal instability of hormone responses in schizophrenia. Prog Neuro-Psychopharm Biol Psychiatry 1983;7:545–549.CrossRefGoogle Scholar
  88. 88.
    Raese JD, King RJ, Barnes D, et al: Retinal oscillatory potentials in schizophrenia. Psychopharmacol Bull 1982;18:72–78.Google Scholar
  89. 89.
    Pycock CJ, Kerwin RW, Carter CJ: Effect of lesion of cortical dopamine terminals on subcortical dopamine in rats. Nature 1980;286:74–77.PubMedCrossRefGoogle Scholar
  90. 90.
    Morency MA, Stewart RJ, Beninger RJ: Effects of unilateral microinjections of sulpiride into the medial prefrontal cortex on circling behavior of rats. Prog Neuro-Psychopharmacol Biol Psychiatry 1985;9:735–738.CrossRefGoogle Scholar
  91. 91.
    Stewart RJ, Morency MA, Beninger RJ: Differential effects of intrafronto-cortical microinjections of dopamine agonists and antagonists on circling behavior of rats. Behav Brain Res 1985;17:67–72.PubMedCrossRefGoogle Scholar
  92. 92.
    Brozoski TJ, Brown RM, Rosvold HE, et al: Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 1979;205:929–932.PubMedCrossRefGoogle Scholar
  93. 93.
    Cleghorn JM, Garnett ES, Nahmias C, et al: Temporal lobe metabolism in schizophrenia. Am J Psychiatry 1988, submitted.Google Scholar
  94. 94.
    Benes FM, Davidson J, Bird E: Quantitative cytoarchitectural studies of the cerebral cortex of schizophrenics. Arch Gen Psychiatry 1986;43:31–35.PubMedGoogle Scholar
  95. 95.
    Morihisa J, Weinberger DR: Is schizophrenia a frontal lobe disease?—An organizing theory of relevant anatomy and physiology, in Andreasen N (ed): Can Schizophrenia Be Localized in the Brain? Washington, DC, American Psychiatric Association Press, 1986.Google Scholar
  96. 96.
    Benes FM, Bird E: An analysis of the arrangement of neurons in cingulate cortex of schizophrenics. Arch Gen Psychiatry 1987;44:608–616.PubMedGoogle Scholar
  97. 97.
    Davison K, Bagley CR: Schizophrenia like psychoses associated with organic disorders of the central nervous system: a review of the literature, in Herrington RN (ed): Current Problems in Neuropsychiatry. London, Head- ley Brothers, 1969.Google Scholar
  98. 98.
    Stevens JR, Bigelow L, Denney D, et al: Telemetered EEG-EOG during psychotic behaviors of schizophrenia. Arch Gen Psychiatry 1979;36:251–262.PubMedGoogle Scholar
  99. 99.
    Nishikawa T, Takashima M, Toru M: Increased [3H] kainic acid binding in the prefrontal cortex in schizophrenia. Neuroscience Lett 1983;40:245–250.CrossRefGoogle Scholar
  100. 100.
    Levin S: Frontal lobe dysfunctions in schizophrenia. II: Impairments of psychological and brain function. J Psychiatr Res 1984;18:57–72.Google Scholar
  101. 101.
    Miiller HF: Prefrontal cortex dysfunction as a common factor in psychosis. Acta Psychiatr Scand 1985;71:431–440.CrossRefGoogle Scholar
  102. 102.
    Nauta WJH: The problem of the frontal lobe: a reinterpretation. J Psychiatr Res 1971;8:167–187.PubMedCrossRefGoogle Scholar
  103. 103.
    Brown R, Colter N, Corsella N, et al: Postmortem evidence of structural brain changes in schizophrenia. Arch Gen Psychiatry 1986;43:36–42.PubMedGoogle Scholar
  104. 104.
    Early TS, Reiman ER, Raichle ME, et al: Left globus pallidus abnormality in never-medicated patients with schizophrenia. Proc Natl Acad Sci 1987;84:561–563.PubMedCrossRefGoogle Scholar
  105. 105.
    Markowitsch HJ: Thalamic mediodorsal nucleus and memory: a critical evaluation of studies in animals and man. Neurosci Biobehav Rev 1982;6:351.PubMedCrossRefGoogle Scholar
  106. 106.
    Nasrallah HA: Is schizophrenia a left hemisphere disease?, in Andreasen N (ed): Can Schizophrenia be Localized in the Brain? Washington, DC, American Psychiatric Association Press, 1986.Google Scholar
  107. 107.
    Snider SR: Cerebellar pathology in schizophrenia: cause or consequence? Neurosci Biobehav Rev 1982;6:47–53.PubMedCrossRefGoogle Scholar
  108. 108.
    Buchsbaum MS, DeLisi LE, Holcomb HH, et al: Anteroposterior gradients in cerebral glucose use in schizophrenic and affective disorders. Arch Gen Psychiatry 1984;41:1159–1168.PubMedGoogle Scholar
  109. 109.
    Cleghorn JM, Garnett ES, Nahmias C, et al: Temporal lobe metabolism in schizophrenia, abstract. Schizophr Res 1988Google Scholar
  110. 110.
    Kraepelin E: Dementia praecox and paraphrenia. New York, RE Krieger, 1971.Google Scholar
  111. 111.
    Stuss DT, Benson DF: The Frontal Lobes. New York, Raven Press, 1986.Google Scholar
  112. 112.
    Goldman-Rakic PS: Topography of cognition: parallel distributed cortical networks in primate association cortex. Ann Rev Neurosci 1988Google Scholar
  113. 113.
    Goldman-Rakic PS: Circuitry of the prefrontal cortex and the regulation of behaviour by representational knowledge, in Plum F, Mountcastle V (eds): Handbook of Physiology. American Physiological Society, 1987.Google Scholar
  114. 114.
    Steffy RA, Asarnow RF, Asarnow JR, et al: The McMaster-Waterloo high- risk project: multifaceted strategy for high-risk research, in Watt NF, Anthony J, Wynne LC, Rolf JE (eds): Children at Risk for Schizophrenia: A Longitudinal Perspective. New York, Cambridge University Press, 1984.Google Scholar
  115. 115.
    Watt NF: In a nutshell: the first two decades of high-risk research in schizophrenia, in Watt NF, Anthony J, Wynne LC, Rolf JE (eds); Children at Risk for Schizophrenia: A Longitudinal Perspective. New York, Cambridge University Press, 1984.Google Scholar
  116. 116.
    Itil TM, Hegue MF, Shapiro DM, et al: Computer-analyzed EEG findings in children of schizophrenic parents. Integrative Psychiatry, 1983;1:71–80.Google Scholar
  117. 117.
    McNeil TF, Kaij L: Offspring of women with nonorganic psychoses, in Watt NF, Anthony J, Wynne LC, Rolf JE (eds): Children at Risk for Schizophrenia: A Longitudinal Perspective. New York, Cambridge University Press, 1984.Google Scholar
  118. 118.
    Hamilton M: Fish’s Schizophrenia. New York, John Wright & Sons, 1984Google Scholar
  119. 119.
    MacCrimmon DJ, Cleghorn JM, Asarnow RF, et al: Children at risk for schizophrenia. Arch Gen Psychiatry 1980;37:671–674.PubMedGoogle Scholar
  120. 120.
    Rakic P: Specifics of cerebral cortical areas. Science 1988;241:170–176.Google Scholar
  121. 121.
    Mednick SA, Machon RA, Huttunen MO, et al: Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry 1988;45:189–192.PubMedGoogle Scholar
  122. 122.
    Weinberger DR: Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987;44;660–670.PubMedGoogle Scholar
  123. 123.
    Etienne P, Baudry M: Calcium dependent aspects of synaptic plasticity, excitatory amino acid neurotransmission, brain aging and schizophrenia: a unifying hypothesis. Neurobiology of Aging 1988;8:362–366.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • John M. Cleghorn
  • Martin L. Albert

There are no affiliations available

Personalised recommendations