Fibronectin Receptor Expression on Thymocytes

  • Michael D. Pierschbacher
  • Pina M. Cardarelli


Entrance of precursor T cells into the thymus and their subsequent exit into the circulation are prerequisite events for development of mature T-lymphocyte characteristics (1). Thymic epithelial cells may play an integral role in thymocyte differentiation, both through direct contact and by secretion of thymic hormones (2). Thus, positional and developmental cues for maturing thymocytes may come from neighboring cell surfaces (3) or from the extracellular matrix surrounding these cells. However, the full complement of molecules involved in this differentiation process has not been identified. The influence of cell adhesion on cell growth and differentiation is well established for many cell systems (4–10) yet the interaction of lymphocytes with adhesive extracellular matrix proteins, with a few exceptions, has been largely unexplored (11–16).


Blast Cell Extracellular Matrix Molecule Vitronectin Receptor Fibronectin Receptor Cell Surface Phenotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stutman O: Intrathymic and extrathymic T cell maturation. Immunol Rev 42:138, 1978.PubMedCrossRefGoogle Scholar
  2. 2.
    Haynes BF: The human thymic microenvironment. Adv Immunol 36:87, 1984.PubMedCrossRefGoogle Scholar
  3. 3.
    Kyewski BA, Rouse RV, Kaplan HS: Thymocyte rosettes: Multicellular complexes of lymphocytes and bone marrow-derived stromal cells in the mouse thymus. Proc Natl Acad Sci USA 79:5646, 1982.PubMedCrossRefGoogle Scholar
  4. 4.
    Turley EA: The control of adrenocortical cytodifferentiation by extracellular matrix. Differentiation 17:93, 1980.PubMedCrossRefGoogle Scholar
  5. 5.
    Chiquet M, Eppenberger HM, Turner DC: Muscle morphogenesis: Evidence for an organizing function of exogenous fibronectin. Develop Biol 88:220, 1981.PubMedCrossRefGoogle Scholar
  6. 6.
    Hochman J, Levy E, Mador N, Gottesman MM, Shearer GM, Okon E: Cell adhesiveness is related to tumorigenicity in malignant lymphoid cells. J Cell Biol 99:1282, 1984.PubMedCrossRefGoogle Scholar
  7. 7.
    Boucaut JC, Darribere T, Poole TJ, Aoyama H, Yamada KM, Thiery JP: Biologically active synthetic peptides as probes of embryonic development: A competitive peptide inhibitor of fibronectin function inhibits gastrulation in amphibian embryos and neural crest cell migration in avian embryos. J Cell Biol 99:1822, 1984.PubMedCrossRefGoogle Scholar
  8. 8.
    Gospodarowicz D, Greenburg G, Birdwell CR: Determination of cellular shape by the extracellular matrix and its correlation with the control of cellular growth. Cancer Res 38:4155, 1978.PubMedGoogle Scholar
  9. 9.
    Chen LB: Alterations in cell surface LETS protein during myogenesis. Cell 10:393, 1977.PubMedCrossRefGoogle Scholar
  10. 10.
    Hay E: Collagen and embryonic development, in Hay E (ed.): Cell Biology of the Extracellular Matrix. New York, Plenum Press, pp 379–409, 1981.Google Scholar
  11. 11.
    Evan CW, Davies MDJ: The influence of cell adhesiveness on the migratory behavior of murine thymocytes. Cell Immunol 33:211, 1977.CrossRefGoogle Scholar
  12. 12.
    Otteskog P, Friskoff J, Sundqvist KG: Morphology and microfilament organization in human blood lymphocytes. Esp Cell Res 137:111, 1982.CrossRefGoogle Scholar
  13. 13.
    Sundqvist KG, Wanger L: Anchorage and lymphocyte function. II. Contact with non-cellular surface, cell density and T-cell activation. Immunology 43:573, 1981.PubMedGoogle Scholar
  14. 14.
    Berrih S, Savino W, Cohen S: Extracellular matrix of the human thymus: Immunofluorescence studies on frozen sections and cultured epithelial cells. J Histochem Cycochem 33:655, 1985.CrossRefGoogle Scholar
  15. 15.
    Sundqvist KG, Otteskog P: Anchorage and lymphocyte function. Collagen and maintenance of motile shape in T cells. Immunology 58:365, 1986.PubMedGoogle Scholar
  16. 16.
    Savagner P, Imhof BA, Yamada KM, Thiery J-P: Homing of hemopoietic precursor cells to the embryonic thymus: Characterization of an invasive mechanism induced by chemotactic peptides. J Cell Biol 103:2715, 1986.PubMedCrossRefGoogle Scholar
  17. 17.
    Grinnell F, Hays DG, Minter D: Cell adhesion and spreading factor. Partial purification and properties. Exp Cell Res 110:175, 1977.PubMedCrossRefGoogle Scholar
  18. 18.
    Ruoslahti E, Hayman EG: Two active sites with different characteristics in fibronectin. FEBS Lett 97:221, 1979.PubMedCrossRefGoogle Scholar
  19. 19.
    Pearlstein E: Plasma membrane glycoprotein which mediates adhesion of fibroblasts to collagen. Nature 262:497, 1976.PubMedCrossRefGoogle Scholar
  20. 20.
    Klebe RJ: Isolation of a collagen-dependent cell attachment factor. Nature 250:248, 1974.PubMedCrossRefGoogle Scholar
  21. 21.
    Hynes RO, Yamada KM: Fibronectins: Multifunctional modular glycoproteins. J Cell Biol 95:369, 1982.PubMedCrossRefGoogle Scholar
  22. 22.
    Holmes R: Preparation from human serum of an α-1 protein which induces the immediate growth of unadapted cells in vitro. J Cell Biol 32:297, 1967.PubMedCrossRefGoogle Scholar
  23. 23.
    Barnes D, Wolfe R, Serrero G, McClure D, Sako G: Effects of a serum spreading factor on growth and morphology of cells in serum-free medium. J Su-pramol Struct 14:47, 1980.CrossRefGoogle Scholar
  24. 24.
    Hayman EG, Engvall E, A’Hearn E, Barnes D, Pierschbacher M, Ruoslahti E: Cell attachment on replicas of SDS Polyacrylamide gels reveals two adhesive plasma proteins. J Cell Biol 95:20, 1982.PubMedCrossRefGoogle Scholar
  25. 25.
    Hayman EG, Pierschbacher MD, Ohgren Y, Ruoslahti E: Serum spreading factor (vitronectin) is present at the cell surface and in tissues. Proc Natl Acad Sci USA 80:4003, 1983.PubMedCrossRefGoogle Scholar
  26. 26.
    Miller EJ: Chemistry of the collagens and their distribution, in Piez KA, Reddi AH, (eds): Connective Tissue Biochemistry. Amsterdam, Elsevier, pp 41–78, 1983.Google Scholar
  27. 27.
    Bornstein P, Sage H: Structurally distinct collagen types. Annu Rev Biochem 49:957, 1980.PubMedCrossRefGoogle Scholar
  28. 28.
    Rubin K, Johansson S, Pettersson I, Ocklind C, Obrink B, Hook M: Attachment of rat hepatocytes to collagen and fibronectin: A study using antibodies directed against cell surface components. Biochem Biophys Res Commun 91:86, 1979.PubMedCrossRefGoogle Scholar
  29. 29.
    Terranova VP, Rohrbach DH, Martin GR: Role of laminin in the attachment of PAM 212 (epithelial) cells to basement membrane collagen. Cell 22:719, 1980.PubMedCrossRefGoogle Scholar
  30. 30.
    Couchman JR, Hook M, Rees DA, Timpl R: Adhesion, growth, and matrix production by fibroblasts on laminin substrates. J Cell Biol 96:177, 1983.PubMedCrossRefGoogle Scholar
  31. 31.
    Carlsson RNK, Engvall E, Freeman A, Ruoslahti E: Laminin and fibronectin in cell adhesion: Enhanced adhesion of cells from regenerating liver to laminin. Proc Natl Acad Sci USA 78:2403, 1981.PubMedCrossRefGoogle Scholar
  32. 32.
    Pierschbacher MD, Hayman EG, Ruoslahti E: A synthetic peptide with the cell attachment activity of fibronectin. Proc Natl Acad Sci USA 80:1224, 1983.PubMedCrossRefGoogle Scholar
  33. 33.
    Pierschbacher MD, Ruoslahti E: The cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309:30, 1984a.CrossRefGoogle Scholar
  34. 34.
    Pierschbacher MD, Ruoslahti E: Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc Natl Acad Sci USA 81:5985, 1984b.CrossRefGoogle Scholar
  35. 35.
    Pierschbacher MD, Hayman EG, Ruoslahti E: The cell attachment determinant in fibronectin. J Cell Biochem 28:115, 1985.PubMedCrossRefGoogle Scholar
  36. 36.
    Ruoslahti E, Pierschbacher MD: Arg-Gly-Asp: A highly versatile cell recognition signal. Cell 44:517, 1986.PubMedCrossRefGoogle Scholar
  37. 37.
    Ruoslahti E, Pierschbacher MD: New perspectives in cell adhesion: RGD and integrins. Science 238:491, 1987.PubMedCrossRefGoogle Scholar
  38. 38.
    Hynes RO: Integrins: A family of cell surface receptors. Cell 48:549, 1987.PubMedCrossRefGoogle Scholar
  39. 39.
    Pierschbacher MD, Hayman EG, Ruoslahti E: Location of the cell-attachment site in fibronectin with monoclonal antibodies and proteolytic fragments of the molecule. Cell 26:259, 1981.PubMedCrossRefGoogle Scholar
  40. 40.
    Yamada KM, Kennedy DW: Dualistic nature of adhesive protein function: Fibronectin and its biologically active peptide fragments can autoinhibit fibronectin function. J Cell Biol 99:29, 1984.PubMedCrossRefGoogle Scholar
  41. 41.
    Pytela R, Pierschbacher MD, Ruoslahti E: Identification and isolation of a 140 kilodalton cell surface glycoprotein with properties expected of a fibronectin receptor. Cell 40:191, 1985a.CrossRefGoogle Scholar
  42. 42.
    Pytela R, Pierschbacher MD, Ruoslahti E: A 125/115 KD cell surface receptor specific for vitronectin interacts with the Arg-Gly-Asp adhesion sequence derived from fibronectin. Proc Natl Acad Sci USA 82:5766, 1985b.CrossRefGoogle Scholar
  43. 43.
    Dedhar S, Ruoslahti E, Pierschbacher MD: A cell surface receptor complex for collagen type I recognizes the Arg-Gly-Asp sequence. J Cell Biol 104:585, 1987.PubMedCrossRefGoogle Scholar
  44. 44.
    Pytela R, Pierschbacher MD, Ginsberg MH, Plow EF, Ruoslahti E: Platelet membrane glycoprotein IIb/IIIa is a member of a family of Arg-Gly-Aspspecific adhesion receptors. Science 231:1559, 1986.PubMedCrossRefGoogle Scholar
  45. 45.
    Pierschbacher MD, Ruoslahti E: Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding specificity in cell adhesion. J Biol Chem 262:17294, 1987.PubMedGoogle Scholar
  46. 46.
    Argraves WS, Pytela R, Suzuki S, Millan JL, Pierschbacher MD, Ruoslahti E: cDNA sequences from the α subunit of the fibronectin receptor predict a transmembrane domain and a short cytoplasmic peptide. J Biol Chem 261:12922, 1986.PubMedGoogle Scholar
  47. 47.
    Argraves WS, Suzuki S, Arai H, Thompson K, Pierschbacher MD, Ruoslahti E: Amino acid sequence of the human fibronectin receptor. J Cell Biol 105:1183, 1987.PubMedCrossRefGoogle Scholar
  48. 48.
    Horwitz A, Duggan K, Buck C, Beckerle MC, Burridge K: Interaction of plasma membrane fibronectin receptor with talin—a transmembrane linkage. Nature 320:531, 1986.PubMedCrossRefGoogle Scholar
  49. 49.
    Hirst R, Horwitz A, Buck C, Rohrschneider L: Phosphorylation of the fibronectin receptor complex in cells transformed by oncogenes that encode tyrosine kinases. Proc Natl Acad Sci USA 83:6470, 1986.PubMedCrossRefGoogle Scholar
  50. 50.
    Hemler ME: Adhesive protein receptors on hematopoietic cells. Immunol Today 9:109, 1988.PubMedCrossRefGoogle Scholar
  51. 51.
    Kunicki TJ, Nugent DJ, Staats SJ, Orchekowski RP, Wayner EA, Carter WG: The human fibroblast class II extracellular matrix receptor mediates platelet adhesion to collagen and is identical to platelet glycoprotein Ia-IIa complex. J Biol Chem 263:4516, 1988.PubMedGoogle Scholar
  52. 52.
    Gelsen KR, Dillner L, Engvall E, Ruoslahti E: The human laminin receptor is a member of the integrin family of cell adhesion receptors. Science 241:1228, 1988.CrossRefGoogle Scholar
  53. 53.
    Springer TA, Dustin ML, Kishimoto TK, Marlin SD: The lymphocyte function-associated LFA-1, CD2 and LFA-3 molecules: cell adhesion receptors of the immune system. Annu Rev Immunol 5:223, 1987.PubMedCrossRefGoogle Scholar
  54. 54.
    Ceredig R, MacDonald HR: Intrathymic differentiation: some unanswered questions. Surv Immunol Res 4:87, 1985.PubMedGoogle Scholar
  55. 55.
    Fowlkes BJ, Mathieson BJ: Intrathymic differentiation: thymocyte heterogeneity and the characterization of early T-cell precursors. Surv Immunol Res 4:96, 1985.PubMedGoogle Scholar
  56. 56.
    von Boehmer H: The selection of the alpha, beta heterodimeric T-cell receptor for antigen. Immunol Today 7:333, 1986.CrossRefGoogle Scholar
  57. 57.
    Adkins B, Mueller C, Okada CY, Reichert RA, Weissman IL, Spangrude GJ. Early events in T-cell maturation. Annu Rev Immunol 5:325, 1987.PubMedCrossRefGoogle Scholar
  58. 58.
    Sprent J, Webb SR: Function and specificity of T cell subsets in the mouse. Adv Immunol 41:39, 1987.PubMedCrossRefGoogle Scholar
  59. 59.
    Bevilacqua MP, Amrani D, Mosesson MW, Bianco C: Receptors for cold-insoluble globulin (plasma fibronectin) on human monocytes. J Exp Med 153:42, 1981.PubMedCrossRefGoogle Scholar
  60. 60.
    Hosein B, Bianco C: Monocyte receptors for fibronectin characterized by a monoclonal antibody that interferes with receptor activity. J Exp Med 162:157, 1985.PubMedCrossRefGoogle Scholar
  61. 61.
    Gudewicz PW, Molnar J, Lai MZ, Beezhold DW, Siebring Jr GE, Credo RB, Lorand L: Fibronectin-mediated uptake of gelatin-coated latex particles by peritoneal macrophages. J Cell Biol 87:427, 1980.PubMedCrossRefGoogle Scholar
  62. 62.
    Van De Water L, Schroeder S, Crenshaw III EG, Hynes R: Phagocytosis of gelatin-latex particles by a murine macrophage line is dependent on fibronectin and heparin. J Cell Biol 90:32, 1981.PubMedCrossRefGoogle Scholar
  63. 63.
    Cardarelli PM, Blumenstock FA, Saba TM, Rourke FJ: Fibronectin enhanced attachment of gelatin-coated erythrocytes to isolated hepatic Kupffer cells J Leukocyte Biol 36:477, 1984.PubMedGoogle Scholar
  64. 64.
    Giancotti FG, Comoglio PM, Tarone G: Fibronectin-plasma membrane interaction in the adhesion of hemopoietic cells. J Cell Biol 103:429, 1986.PubMedCrossRefGoogle Scholar
  65. 65.
    Wright SD, Craigmyle LS, Silverstein S: Fibronectin and serum amyloid P component stimulate C3b- and C3bi-mediated phagocytosis in cultured human monocytes. J Exp Med 158:1338, 1983.PubMedCrossRefGoogle Scholar
  66. 66.
    Pommier CG, Inada S, Fries LF, Takahashi T, Frank MM, Brown EG: Plasma fibronectin enhances phagocytosis of opsonized particles by human peripheral blood monocytes. J Exp Med 157:1844, 1983.PubMedCrossRefGoogle Scholar
  67. 67.
    Wright SD, Meyer BC: Fibronectin receptor on human macrophages recognizes the sequence Arg-Gly-Asp-Ser. J Exp Med 162:762, 1985.PubMedCrossRefGoogle Scholar
  68. 68.
    Thiery J-P, Duband JL, Tucker GC: Cell migration in the vertebrate embryo: role of cell adhesion and tissue environment in pattern formation. Annu Rev Cell Biol 1:91, 1985.PubMedCrossRefGoogle Scholar
  69. 69.
    Bronner-Fraser M: Alteration in neural crest migration by a monoclonal antibody that affects cell adhesion. J Cell Biol 101:610, 1985.PubMedCrossRefGoogle Scholar
  70. 70.
    Scollay R, Shortman K: Cell traffic in the adult thymus, in Watson J, Marbrook J (eds): Recognition and Regulation in Cell-Mediated Immunity. New York, Marcel Decker, 1985.Google Scholar
  71. 71.
    Patel VP, Lodish HF: The fibronectin receptor on mammalian erythroid precursor cells: Characterization and developmental regulation. J Cell Biol 102:449, 1986.PubMedCrossRefGoogle Scholar
  72. 72.
    Patel VP, Ciechanover A, Platt O, Lodish HF: Mammalian reticulocytes lose adhesion to fibronectin during maturation to erythrocytes. Proc Natl Acad Sci USA 82:440, 1985.PubMedCrossRefGoogle Scholar
  73. 73.
    Patel VP, Lodish HF: Loss of adhesion of murine erythroleukemia cells to fibronectin during erythroid differentiation. Science 224:996, 1984.PubMedCrossRefGoogle Scholar
  74. 74.
    Rothlein R, Springer TA: The requirement for lymphocyte function-associated antigen-1 in homotypic leukocyte adhesion stimulated by phorbol ester. J Exp Med 163:1132, 1986.PubMedCrossRefGoogle Scholar
  75. 75.
    D’Ardenne AJ, Burns J, Sykes BC, Kirkpatrick P: Comparative distribution of fibronectin and type III collagen in normal human tissues J Pathol 141:55, 1983.PubMedCrossRefGoogle Scholar
  76. 76.
    Matthews JB, Potts AJC, Tjejdosiewicz LK: Relationship between fibronectin and lymphoid cells in buccal mucosa, labial salivary glands and palatine tonsil. J Oral Pathol 15:103, 1986.PubMedCrossRefGoogle Scholar
  77. 77.
    Kendall MD: The cells of the thymus, in Kendall MD (ed): The Thymus Gland. New York, Academic Press, pp 63–83, 1981.Google Scholar
  78. 78.
    Cardarelli PM, Pierschbacher MD: T-Lymphocyte differentiation and the extracellular matrix: Identification of a thymocyte subset that attaches specifically to fibronectin. Proc Natl Acad Sci USA 83:2647, 1986.PubMedCrossRefGoogle Scholar
  79. 79.
    Raschke WC: Transformation by Abelson murine leukemia virus: Properties of the transformed cells. Cold Spring Harbor Symposia on Quantitative Biology. Vol. XLIV, pp 2287, 1980.Google Scholar
  80. 80.
    Cardarelli PM, Pierschbacher MD: Identification of fibronectin receptors on T-lymphocytes. J Cell Biol 105:499, 1987.PubMedCrossRefGoogle Scholar
  81. 81.
    Pytela R, Pierschbacher MD, Argraves S, Suzuki S, Ruoslahti E: Arg-Gly-Asp adhesion receptors. Meth Enzymol 144:475, 1987.PubMedCrossRefGoogle Scholar
  82. 82.
    Cardarelli PM, Crispe IN, Pierschbacher MD: Preferential expression of fibronectin receptors on immature thymocytes. J Cell Biol 106:2183, 1988.PubMedCrossRefGoogle Scholar
  83. 83.
    Metcalf D: Structure of the thymus, in Metcalf D (ed): The Thymus, Recent Results in Cancer Research. Berlin, Springer-Verlag New York pp 1–17, 1966.Google Scholar
  84. 84.
    Rothenberg E, Lugo JP: Differentiation and cell division in the mammalian thymus. Dev Biol 112:1, 1985.PubMedCrossRefGoogle Scholar
  85. 85.
    Crispe IN, Moore M, Husmann LA, Smith LF, Bevan MJ, Shimonkevitz RP: Differentiation potential of subsets of CD4-8- thymocytes. Nature (London) 329:336, 1987.CrossRefGoogle Scholar
  86. 86.
    Shimonkevitz RP, Husmann LA, Bevan MJ, Crispe IN: Expression of the interleukin-2 receptor precedes the differentiation of immature thymocytes. Nature (London) 329:157, 1987.CrossRefGoogle Scholar
  87. 87.
    Fowlkes BJ, Schwartz RH, Pardoll DM: Deletion of self-reactive thymocytes occurs at a CD4+8+ precursor stage. Nature 334:620, 1988.PubMedCrossRefGoogle Scholar
  88. 88.
    MacDonald HR, Hengartner H, Pedrazzini T: Intrathymic deletion of self-reactive cells prevented by neonatal anti-CD4 antibody treatment. Nature 335:174, 1988.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Michael D. Pierschbacher
  • Pina M. Cardarelli

There are no affiliations available

Personalised recommendations