Skip to main content

Anti-Inflammatory Properties of Monoclonal Anti-Mo1 (CD11b/CD18) Antibodies In Vitro and In Vivo

  • Conference paper
  • 60 Accesses

Abstract

Mol is a heterodimeric glycoprotein (gp 155,95) expressed on the plasma membrane of neutrophils (PMN), monocytes and certain macrophages, and a subset of large granular lymphoid cells (reviewed in 1). The identification and characterization of Mol was made possible by the generation of monoclonal antibodies specific for epitopes expressed on the higher molecular weight α-subunit or the lower molecular weight β-subunit. According to World Health Organization (WHO) nomenclature, antibodies recognizing the α-subunit of Mol are designated anti-CD11b while antibodies specific for the β-subunit are termed anti-CD 18 (2). Mol (CD11b/CD18) is a member of a family of three structurally related glycoproteins that include LFA-1 (CD11a/CD18) and p150,95 (CD11c/CD18) (3). Each member of this family has a unique higher molecular weight α-subunit that is noncovalently linked with a structurally identical β-subunit (CD18) (Fig. 9.1). Considerable progress has been made in the biochemical characterization of Mol, LFA-1, and p150,95 (3), and the genes encoding the CD11b and CD18 subunits of Mol have been cloned (4,5). Similarly, the functional significance of the CD11/CD18 glycoproteins has been deduced from the results of antibody blocking experiments in which selective functional defects are exhibited by normal cells pre-treated with monoclonal antibodies specific for CD11 or CD18 epitopes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dana N, Todd III RF, Arnaout MA: The Mol surface glycoprotein: Structure, function and clinical significance. Pathol Immunopathol Res 5:371, 1986.

    Article  PubMed  CAS  Google Scholar 

  2. Hogg N, Horton MA: Myeloid antigens: new and previously defined clusters, In McMichael AJ (ed.): Leucocyte Typing III: White Cell Differentiation Antigens. Oxford, Oxford University Press, p. 576–602, 1987.

    Google Scholar 

  3. Sanchez-Madrid F, Nagy JA, Robbins E, Simon P, Springer TA: A human leukocyte differentiation antigen family with distinct alpha subunits and a common beta subunit: the lymphocyte-function associated antigen (LFA-1), the C3bi complement receptor (OKM1/Mac-1), and the p150,95 molecule. J Exp Med 158:1785, 1983.

    Article  PubMed  CAS  Google Scholar 

  4. Kishimoto TK, O’Connor K, Lee A, Roberts TM, Springer TA: Cloning of the β subunit of the leukocyte adhesion proteins: Homology to an extracellular matrix receptor defines a novel supergene family. Cell 48:681, 1987.

    Article  PubMed  CAS  Google Scholar 

  5. Arnaout MA, Remold-O’Donnell E, Pierce MW, Harris P, Tenen DG: Molecular cloning of the α subunit of human and guinea pig leukocyte adhesion glycoprotein Mol: Chromosomal localization and homology to the α subunits of integrins. Proc Natl Acad Sci USA 85:2776, 1988.

    Article  PubMed  CAS  Google Scholar 

  6. Arnaout MA, Todd III RF, Dana N, Melamed J, Schlossman SF, Colten HR: Inhibition of phagocytosis of complement C3- or immunoglobulin G-coated particles and of C3bi binding by monoclonal antibodies to a monocyte-granulocyte membrane glycoprotein (Mol). globulin G-coated Clin Invest 72:171, 1983.

    Article  CAS  Google Scholar 

  7. Beller DI, Springer TA, Schreiber RD: Anti-Mac-1 selectively inhibits the mouse and human type three complement receptor. J Exp Med 156:1000, 1982.

    Article  PubMed  CAS  Google Scholar 

  8. Wright SD, Rao PE, Van Voorhis WC, Craigmyle LS, Iida K, Talle MA, Westberg EF, Goldstein G, Silverstein SC: Identification of the C3bi receptor of human monocytes and macrophages by using monoclonal antibodies. Proc Natl Acad Sci USA 80:5699, 1983.

    Article  CAS  Google Scholar 

  9. Klebanoff SJ, Beatty PG, Schreiber RD, Ochs HD, Waltersdorph AM: Effect of antibodies directed against complement receptors on phagocytosis by polymorphonuclear leukocytes: Use of iodination as a convenient measure of phagocytosis. J Immunol 134:1153, 1985.

    PubMed  CAS  Google Scholar 

  10. Anderson DC, Miller LJ, Schmalsteig FC, Rothlein R, Springer TA: Contributions of the Mac-1 glycoprotein family to adherence-dependent granulocyte functions: Structure-function assessments employing subunit-specific monoclonal antibodies. J Immunol 137:15, 1986.

    PubMed  CAS  Google Scholar 

  11. Ross GD, Cain JA, Lachmann PJ: Membrane complement receptor type three (CR3) has lectin-like properties analogous to bovine conglutinin and functions as a receptor for zymosan and rabbit erythrocytes as well as a receptor for CM. J Immunol 134:3307, 1985.

    PubMed  CAS  Google Scholar 

  12. Arnaout MA, Dana N, Pitt J, Todd III RF: Deficiency of two human leukocyte surface membrane glycoproteins (Mol and LFA-1). Fed Proc 44:2664, 1985.

    PubMed  CAS  Google Scholar 

  13. Hickstein DD, Locksley RM, Beatty PG, Smith A, Stone DM, Root RK: Monoclonal antibodies binding to the human neutrophil C3bi receptor have disparate functional effects. Blood 67:1054, 1986.

    PubMed  CAS  Google Scholar 

  14. Blackwell JRM, Ezekowitz RAB, Roberts MB, Channon JY, Sim RB, Gordon S: Macrophage complement and lectin-like receptors bind Leishmania in the absence of serum. J Exp Med 162:324, 1985.

    Article  PubMed  CAS  Google Scholar 

  15. Mosser DM, Edelson PJ: The mouse macrophage receptor for C3bi (CR3) is a major mechanism in the phagocytosis of Leishmania promastigotes. J Immunol 135:2785, 1985.

    PubMed  CAS  Google Scholar 

  16. Payne, NR, Horwitz MA. Phagocytosis of Legionella pneumophila is mediated by human monocyte complement receptors. J Exp Med 166:1377, 1987.

    Article  PubMed  CAS  Google Scholar 

  17. Wallis WJ, Hickstein DD, Schwartz BR, June CH, Ochs GD, Beatty PG, Klebanoff SJ, Harlan JM: Monoclonal antibody-defined functional epitopes on the adhesion-promoting glycoprotein complex (CDw18) of human neutrophils. Blood 67:1007, 1986.

    PubMed  CAS  Google Scholar 

  18. Altieri DC, Edgington TS: The Mac-1 molecule on myeloid cells has a receptor recognition specificity for fibrinogen. FASEB J 2.A1461, 1988.

    Google Scholar 

  19. Altieri DC, Edgington TS: The saturable high affinity association of factor X to ADP-stimulated monocytes defines a novel function of the Mac-1 receptor. J Biol Chem 263:7007, 1988.

    PubMed  CAS  Google Scholar 

  20. Schwartz BR, Ochs HD, Beatty PG, Harlan JM: A monoclonal antibody-defined membrane antigen complex is required for neutrophil-neutrophil aggregation. Blood 65:1533, 1985.

    Google Scholar 

  21. Dana N, Styrt B, Griffin JD, Todd III RF, Klempner MS, Arnaout MA: Two functional domains in the phagocyte membrane glycoprotein Mol identified with monoclonal antibodies. J Immunol 137:3259, 1986.

    PubMed  CAS  Google Scholar 

  22. Wallis, WJ, Beatty PG, Ochs HD, Harlan JM: Human monocyte adherence to cultured vascular endothelium: monoclonal antibody-defined mechanisms. J Immunol 135:2323, 1985.

    PubMed  CAS  Google Scholar 

  23. Harlan JM, Killen PD, Senecal FM, Schwartz BS, Yee EK, Taylor RF, Beatty PG, Price TH, Ochs HD: The role of neutrophil membrane glycoprotein GP-150 in neutrophil adherence to endothelium in vitro. Blood 66:167, 1985.

    PubMed  CAS  Google Scholar 

  24. Dienner AM, Beatty PG, Ochs HD, Harlan JM: The role of neutrophil membrane glycoprotein 150 (GP-150) in neutrophil-mediated endothelial cell injury in vitro. J Immunol 135:537, 1985.

    Google Scholar 

  25. Simon RH, Dehart PD, Todd III RF: Neutrophil-induced injury of rat pulmonary alveolar epithelial cells. J Clin Invest 78:1375, 1986.

    Article  PubMed  CAS  Google Scholar 

  26. Ismail G, Morganroth ML, Todd III RF, Boxer LA: Prevention of pulmonary injury in isolated perfused rat lungs by activated human neutrophils pre-incubated with anti-Mol monoclonal antibody. Blood 69:1167, 1987.

    PubMed  CAS  Google Scholar 

  27. Wright SD, Reddy PA, Jong MTC, Erickson BW: C3bi receptor (complement receptor type 3) recognizes a region of complement protein C3 containing the sequence Arg-Gly-Asp. Proc Natl Acad Sci USA 84:1965, 1987.

    Article  PubMed  CAS  Google Scholar 

  28. Wright SD, Jong MTC: Adhesion-promoting receptors on human macrophages recognize Eschericia coli by binding to lipopolysaccharide. J Exp Med 164:1876, 1986.

    Article  PubMed  CAS  Google Scholar 

  29. Lo SK, Wright SD: CF3 mediates binding of PMN to endothelial cells (EC) via its RGD binding, not the LPS binding site. FASEB J 2:A1236, 1988.

    Google Scholar 

  30. Todd III RF, Freyer DR: The CD11/CD18 leukocyte glycoprotein deficiency. Hematol/Oncol Clin N Am 2:13, 1988.

    Google Scholar 

  31. Malech HL, Gallin JI: Neutrophils in human diseases. N Eng J Med 317:687, 1987.

    Article  CAS  Google Scholar 

  32. Braunwald E, Kloner RA: Myocardial reperfusion: a double-edged sword? J Clin Invest 76:1713, 1985.

    Article  PubMed  CAS  Google Scholar 

  33. Nayler WG, Elz JS: Reperfusion injury: Laboratory artifact or clinical dilemma? Circulation 74:1713, 1985.

    Google Scholar 

  34. Engler R: Granulocytes and oxidative injury in myocardial ischemia and reperfusion. Fed Proc 46:2395, 1987.

    Google Scholar 

  35. Romson JL, Hook BG, Kunkel SL, Abrams GD, Schork MA, Lucchesi BR: Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation 67:1016, 1983.

    Article  PubMed  CAS  Google Scholar 

  36. Mullane KM, Read N, Salmon JA, Moncada S: Role of leukocytes in acute myocardial infarction in anesthetized dogs: Relationship to myocardial salvage by anti-inflammatory drugs. J Pharmacol Exp Ther 228:510, 1984.

    PubMed  CAS  Google Scholar 

  37. Romson JL, Hook BG, Rigot VH, Schork MA, Swanson DP, Lucchesi BR: The effect of ibuprofen on accumulation of 111-indium labelled platelets and leukocytes in experimental myocardial infarction. Circulation 66:1002, 1982.

    Article  PubMed  CAS  Google Scholar 

  38. Bednar M, Smith B, Pinto A, Mullane KM: Nafazatrom-induced salavage of ischemic myocardium in anesthetized dogs is mediated through inhibition of neutrophil function. Circ Res 57:131, 1985.

    PubMed  CAS  Google Scholar 

  39. Simpson PJ, Mitsos SE, Ventura A, Gallagher KP, Fantone JC, Abrams GC, Schork MA, Lucchesi BR: 1987. Prostacyclin protects ischemic reperfused myocardium in the dog by inhibition of neutrophil activation. Am Heart J 113:129, 1987.

    Article  CAS  Google Scholar 

  40. Simpson PJ, Mickelson JK, Fantone JC, Gallagher KP, Lucchesi BR: Iloprost inhibits neutrophil function in vitro and in vivo and limits experimental infarct size in the canine heart. Circ Res 60:666, 1987.

    PubMed  CAS  Google Scholar 

  41. Lucchesi BR, Burmeister W, Lomas T, Abrams G: Ischemic changes in the canine heart as affected by the dimethylquaternery analog of propranolol UM 272 (SC27761). J Pharmacol Exp Ther 199:310, 1976.

    PubMed  CAS  Google Scholar 

  42. Letvin NL, Todd III RF, Palley LS, Schlossman SF, Griffin JD: Conservation of myeloid surface antigens on primate granulocytes. Blood 61:408, 1983.

    PubMed  CAS  Google Scholar 

  43. Giger U, Boxer LA, Simpson PJ, Lucchesi BR, Todd III RF: Deficiency of leukocyte surface glycoproteins Mol, LFA-1, and Leu M5 in a dog with recurrent bacterial infections. An animal model. Blood 69:1622, 1987.

    PubMed  CAS  Google Scholar 

  44. Wright SD, Jong MTC, Levin SM: CR3 expresses two binding sites, one for RGD-peptide, and one for bacterial LPS. FASEB J 2:A1236, 1988.

    Google Scholar 

  45. Simpson PJ, Todd III RF, Fantone JC, Mickelson JK, Griffin JD, and Lucchesi BR: Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody (anti-Mol, anti-CD11b) that inhibits leukocyte adhesion. J Clin Invest 81:624, 1988.

    Article  PubMed  CAS  Google Scholar 

  46. Simpson PJ, Todd III RF, Mickelson JK, Fantone JC, Gallagher KP, Tamura Y, Lee KA, Kitzen JM, Lucchesi BR: Sustained limitation of myocardial reperfusion injury by a monoclonal antibody that inhibits leukocyte adhesion. FASEB J 2: A1237, 1988.

    Google Scholar 

  47. Simpson PJ, Fantone JC, Mickelson JK, Gallagher KP, Lucchesi BR: Identification of a time window for therapy to reduce experimental canine myocardial injury: suppression of neutrophil activity during 72 hours of reperfusion. Circ Res 63:1070, 1988.

    PubMed  CAS  Google Scholar 

  48. Reimer KA, Lowe JE, Rasmussen MM, Jennings RB: The wavefront of ischemic cell death. 1. Myocardial infarct size vs. duration of coronary occlusion. Circulation 56:786, 1977.

    PubMed  CAS  Google Scholar 

  49. Arfors K-E, Lundberg C, Lindbom L, Lundberg K, Beatty PG, Harlan JM: A monoclonal antibody to the membrane glycoprotein complex CD18 inhibits polymorphonuclear leukocyte accumulation and plasma leukage in vivo. Blood 69:338, 1986.

    Google Scholar 

  50. Price TH, Beatty PG, Corpuz SR: In vivo inhibition of neutrophil function in the rabbit using monoclonal antibody to CD18. J Immunol 139:4174, 1987.

    PubMed  CAS  Google Scholar 

  51. Rosen H, Gordon S. Monoclonal antibody to the murine type 3 complement receptor inhibits adhesion of myelomonocytic cells in vitro and inflammatory cell recruitment in vivo. J Exp Med 166:1685, 1987.

    Article  PubMed  CAS  Google Scholar 

  52. Hernandez, LA, Grisham MB, Twohig B, Arfors K-E, Harlan JM, Granger DN: Role of neutrophils in ischemia-reperfusion-induced microvascular injury. Am J Physiol 253:H699, 1987.

    PubMed  CAS  Google Scholar 

  53. Vedder NB, Winn RK, Rice CL, Chi EY, Arfors K-E, Harlan JM: A monoclonal antibody to the adherence-promoting leukocyte glycoprotein, CD 18, reduces organ injury and improves survival from hemorrhagic shock and resuscitation in rabbits. J Clin Invest 81:939, 1988.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this paper

Cite this paper

Todd, R.F., Simpson, P.J., Lucchesi, B.R. (1990). Anti-Inflammatory Properties of Monoclonal Anti-Mo1 (CD11b/CD18) Antibodies In Vitro and In Vivo. In: Springer, T.A., Anderson, D.C., Rothlein, R., Rosenthal, A.S. (eds) Leukocyte Adhesion Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3234-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3234-6_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7927-3

  • Online ISBN: 978-1-4612-3234-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics