Skip to main content

The Role of Oxidation in Diseases of the Human Erythrocyte

  • Chapter
Topics in Pediatrics

Abstract

Considerable evidence exists that red blood cells (RBC) are oxidatively damaged in vivo.1–10 Since these cells have limited ability to repair such damage, the cumulative injury resulting from oxidation can contribute to cell death. In red cells characterized by congenital or acquired structural defects, susceptibility to oxidant injury is often increased.2 However, the extent to which oxidant injury contributes to shortened survival of these RBC is not clearly determined. We will discuss factors that render the red cell susceptible to oxidant injury, review several clinical disorders in which red cell oxidant injury has been reported, and provide a rationale for designing therapies to prevent oxidative damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dodge JT, Cohen G, Kayden H, et al: Peroxidation hemolysis of red blood cells from patients with abeta lipoproteinemia (acanthocytosis). J Clin Invest 46:357–368, 1967.

    Article  PubMed  CAS  Google Scholar 

  2. Stocks J, Offerman EL, Modell CB, et al: The susceptibility to autoxidation of human red cell lipids in health and disease. Br J Haematol 23:713–724, 1972.

    Article  PubMed  CAS  Google Scholar 

  3. Rachmilewitz EA, Lubin BH, Shohet SB: Lipid membrane peroxidation in β thalassemia major. Blood 47:495–505, 1976.

    PubMed  CAS  Google Scholar 

  4. Allen DW, Johnson GJ, Cadman S, et al: Membrane polypeptide aggregates in glucose-6-phosphate dehydrogenase-deficient and in vitro aged red blood cells. J Lab Clin Med 91:321–327, 1978.

    PubMed  CAS  Google Scholar 

  5. Johnson GJ, Allen DW, Cadman S, et al: Red cell membrane polypeptide aggregates in glucose-6-phosphate dehydrogenase mutants with chronic hemolytic disease. N Engl J Med 301:522–527, 1979.

    Article  PubMed  CAS  Google Scholar 

  6. Chiu D, Lubin B, Shohet SB: Peroxidation reactions in red cell biology. In Pryor W (ed): Free Radicals in Biology, Vol V. New York; Academic Press, 1982, pp 115–160.

    Google Scholar 

  7. Jain SK, Yip R, Hoesch RM, et al: Evidence of peroxidative damage to the erythrocyte membrane in iron deficiency. Am J Clin Nutr 37:26–30, 1983.

    PubMed  CAS  Google Scholar 

  8. Rank BH, Carlson J, Hebbel RP: Abnormal redox status of membrane-protein thiols in sickle erythrocytes. J Clin Invest 75:1531–1537, 1985.

    Article  PubMed  CAS  Google Scholar 

  9. Schwartz RS, Rybicki AC, Heath RH, et al: Protein 4.1 in sickle erythrocytes: Evidence for oxidative damage. J Biol Chem 262:15666–15672, 1987.

    PubMed  CAS  Google Scholar 

  10. Prasartkaew S, Bunyaratvej A, Fucharoen S, et al: Oxidative stress and antioxidant enzymes in hemoglobin H disease. BDOAS 23(5A): 193–198, 1988.

    CAS  Google Scholar 

  11. Girotti AW, Bachowski GJ, Jordan JE: Lipid peroxidation in erythrocyte membranes: Cholesterol product analysis in photosensitized and xanthine oxidase-catalyzed reactions. Lipids 22:401–408, 1987.

    Article  PubMed  CAS  Google Scholar 

  12. Van Kuijk FJGM, Sevanian A, Handelman GJ, et al: A new role for phospholipase A2: Protection of membranes from lipid peroxidation damage. TIBS 12:31–34, 1987.

    Google Scholar 

  13. Jacob HS: Mechanisms of Heinz body formation and abnormal hemoglobin molecule. Semin Hematol 7:341–354, 1970.

    PubMed  CAS  Google Scholar 

  14. Rachmilewitz EA: Denaturation of the normal and abnormal hemoglobin molecule. Semin Hematol 11:441–462, 1974.

    PubMed  CAS  Google Scholar 

  15. Wetterstroem N, Brewer GJ, Warth JA, et al: Relationship of glutathione levels and Heinz body formation to irreversibly sickled cells in sickle cell anemia. J Lab Clin Med 103:589–596, 1984.

    PubMed  CAS  Google Scholar 

  16. Waugh S, Low PS: Hemichrome binding to band 3: Nucleation of Heinz bodies on the erythrocyte membrane. Biochemistry 24:34–39, 1985.

    Article  PubMed  CAS  Google Scholar 

  17. Mannoji M, Sugihra T, Yawata Y: Heinz body formation in red cell membrane disorders: Its acceleration in membrane lipid abnormalities. Scand J Haematol 35: 257–263, 1985.

    Article  PubMed  CAS  Google Scholar 

  18. Reinhart WH, Sung LA, Chien S: Quantitative relationship between Heinz body formation and red blood cell deformability. Blood 68:1376–1383, 1986.

    PubMed  CAS  Google Scholar 

  19. Waugh SM, Willardson BM, Labotka RJ, et al: Heinz bodies induce clustering of band 3, glycophorin and ankyrin in sickle cell erythrocytes. J Clin Invest 78:1155–1160, 1986.

    Article  PubMed  CAS  Google Scholar 

  20. Shaklai N, Shviro Y, Rabizadeh E, et al: Accumulation and drainage of hemin in the red cell membrane. Biochim Biophys Acta 821:355–366, 1985.

    Article  PubMed  CAS  Google Scholar 

  21. Janney SK, Joist JH, Fitch CD: Excess release of ferriheme in G6PD-deficient erythrocytes: Possible cause of hemolysis and resistance to malaria. Blood 67:331–333, 1986.

    PubMed  CAS  Google Scholar 

  22. Kuross SA, Rank BH, Hebbel RP: Excess heme in sickle erythrocyte inside-out membranes: Possible role in thiol oxidation. Blood 71:876–882, 1988.

    PubMed  CAS  Google Scholar 

  23. Liu SC, Zhai S, Palek J: Detection of hemin release during hemoglobin S denaturation. Blood 71:1755–1758, 1988.

    PubMed  CAS  Google Scholar 

  24. Chiu D, Lubin B: Oxidative hemoglobin denaturation and RBC destruction: The effect of heme on red cell membranes. Semin Hematol 2:128–135, 1989 (in press).

    Google Scholar 

  25. Sadrzadeh SMH, Grat E, Panter SS, et al: Hemoglobin: A biologic Fenton reagent. J Biol Chem 259:14354–14356, 1984.

    PubMed  CAS  Google Scholar 

  26. Puppo A, Halliwell B: Formation of hydroxyl radicals from peroxide in the presence of iron. Biochem J 249:185–190, 1988.

    PubMed  CAS  Google Scholar 

  27. Weiss SJ: The role of superoxide destruction of erythrocyte targets by human neutrophils. J Biol Chemx 255:9912–9917, 1980.

    PubMed  CAS  Google Scholar 

  28. Claster S, Chiu DTY, Quintanilha A, Lubin B: Neutrophils mediate lipid peroxidation in human red cells. Blood 64:1079–1084, 1984.

    PubMed  CAS  Google Scholar 

  29. Oski FA, Barness LA: Vitamin E deficiency: A previously unrecognized cause of hemolytic anemia in the premature infant. Pediatrics 70:211–220, 1967.

    Article  CAS  Google Scholar 

  30. Ritchie JH, Fish MB, McMasters V, et al: Edema and hemolytic anemia in premature infants. N Engl J Med 279:1185–1190, 1968.

    Article  PubMed  CAS  Google Scholar 

  31. Becker PS, Lux SE: Hereditary spherocytosis and related disorders. Clin Haematol 14(1): 15–43, 1985.

    PubMed  CAS  Google Scholar 

  32. Palek J: Hereditary elliptocytosis and related disorders. Clin Haematol 14(l):45–87, 1985.

    PubMed  CAS  Google Scholar 

  33. Lande WM, Mentzer WC: Haemolytic anemia associated with increased cation permeability. Clin Haematol 14(1):89–103, 1985.

    PubMed  CAS  Google Scholar 

  34. Rybicki AC, Heath R, Wolf JL, et al: Deficiency of protein 4.2 in erythrocytes from a patient with a Coombs negative hemolytic anemia. J Clin Invest 81:893–901, 1988.

    Article  Google Scholar 

  35. Corash H, Spielberg S, Bartsocas C, et al: Reduced chronic hemolysis during high-dose vitamin E administration in Mediterranean-type glucose-6-phosphate dehydrogenase deficiency. N Engl J Med 303:416–420, 1980.

    Article  PubMed  CAS  Google Scholar 

  36. Johnson GJ, Vatasserg GT, Finkel B, et al: High-dose vitamin E does not decrease the rate of chronic hemolysis in glucose-6-phosphate dehydrogenase deficiency. N Engl J Med 308:1014–1017, 1983.

    Article  PubMed  CAS  Google Scholar 

  37. Hafez M, Amar ES, Zedan M, et al: Improved erythrocyte survival with combined vitamin E and selenium therapy in children with glucose-6-phosphate dehydrogenase deficiency and mild hemolysis. J Pediatr 108:558–561, 1986.

    Article  PubMed  CAS  Google Scholar 

  38. Newman GJ, Newman TB, Bowie LJ, et al: An examination of the role of vitamin E in glucose-6-phosphate dehydrogenase deficiency. Clin Biochem 12:149–151, 1979.

    Article  PubMed  CAS  Google Scholar 

  39. Rachmilevitz EA, Kahane I: The red cell membrane in thalassemia. Br J Haematol 46:1–6, 1980.

    Article  Google Scholar 

  40. Joshi W, Leb L, Piotrowski J, et al: Increased sensitivity of isolated alpha subunits of normal human hemoglobin to oxidative damage and crosslinkage with spectrin. J Lab Clin Med 102:46–52, 1983.

    PubMed  CAS  Google Scholar 

  41. Canfield LM, Gollan JL, White AG, et al: Serum antioxidant activity in normal and abnormal subjects. Ann Clin Biochem 16(6):299–306, 1979.

    Google Scholar 

  42. Sullivan JL: Iron, plasma antioxidants, and the oxygen radical disease of prematurity. Am J Dis Child 142:1341–1344, 1988.

    PubMed  CAS  Google Scholar 

  43. Piatt OS, Falcone JF: Membrane protein lesions in erythrocytes with Heinz bodies. J Clin Invest 82:1051–1058, 1988.

    Article  Google Scholar 

  44. Flynn TP, Allen DW, Johnson GJ, et al: Oxidant damage of the lipids and proteins of the erythrocyte membranes in unstable hemoglobin disease. J Clin Invest 71:1215–1223, 1983.

    Article  PubMed  CAS  Google Scholar 

  45. Allen DW, Burgoyne CF, Groat JD, et al: Comparison of hemoglobin Koln erythrocyte membrane with malondialdehyde-reacted normal erythrocyte membrane. Blood 64: 1263–1269, 1984.

    PubMed  CAS  Google Scholar 

  46. Chiu D, Vichinsky E, Yee M, et al: Peroxidation, vitamin E and sickle cell anemia. Ann NY Acad Sci 393:323–335, 1982.

    Article  PubMed  CAS  Google Scholar 

  47. Rice-Evans C, Omorphos SC, Baysal E: Sickle cell membranes and oxidative damage. Biochem J 237:265–269, 1986.

    PubMed  CAS  Google Scholar 

  48. Chiu D, Lubin B, Shohet SB: Erythrocyte membrane lipid reorganization during the sickling process. Br J Haematol 41:223–234, 1979.

    Article  PubMed  CAS  Google Scholar 

  49. Chiu D, Lubin B: Abnormal vitamin E and glutathione peroxidase levels in sickle cell anemia. J Lab Clin Med 94:542–548, 1979.

    PubMed  CAS  Google Scholar 

  50. Natta C, Machlin L: Plasma levels of tocopherol in sickle cell anemia subjects. Am J Clin Nutr 32:1359–1362, 1979

    PubMed  CAS  Google Scholar 

  51. Ho T, Liu T, Vichinsky E, et al: Vitamin C levels in patients with sickle cell anemia. Clin Res 32:120, 1984 (abstract).

    Google Scholar 

  52. Jain SK, Williams DM: Reduced levels of plasma ascorbic acid (vitamin C) in sickle cell disease patients: Its possible role in the oxidant damage to sickle cell in vivo. Clin Chim Acta 149:257–261, 1985.

    Article  PubMed  CAS  Google Scholar 

  53. Hebbel RP, Eaton JW, Balasirgam M, et al: Spontaneous oxygen radical generation by sickle erythrocytes. J Clin Invest 70:1253–1259, 1982

    Article  PubMed  CAS  Google Scholar 

  54. Jain SK, Shohet SB: A novel phospholipid in irreversibly sickled cells: Evidence for in vivo peroxidative membrane damage in sickle cell disease. Blood 63:362–367, 1984.

    PubMed  CAS  Google Scholar 

  55. Piatt OS, Falcone JF, Lux SE: Molecular defect in the sickle erythrocyte skeleton. J Clin Invest 75:266–271, 1985.

    Article  Google Scholar 

  56. Dixon E, Winslow RM: The interaction between (Ca+2-Mg+2)-ATPase and the soluble activator (calmodulin) in erythrocytes containing haemoglobin S. Br J Haematol 47:391–397, 1981.

    Article  PubMed  CAS  Google Scholar 

  57. Zwaal RFA, Roelofsen B, Comfurins P, et al: Organization of phospholipids in human red cell membranes as detected by the action of various purified phospholipases. Biochim Biophys Acta 406:83–86, 1975.

    Article  PubMed  CAS  Google Scholar 

  58. Lubin B, Chiu D, Bastacky J, et al: Abnormalities in membrane phospholipid organization in sickled erythrocytes. J Clin Invest 67:1643–1649, 1981.

    Article  PubMed  CAS  Google Scholar 

  59. Franck PFH, Chiu DTY, Op den Kamp JAF, et al: Accelerated transbilayer movement of phosphatidylcholine in sickled erythrocytes. J Biol Chem 258:8435–8442, 1983.

    Google Scholar 

  60. Kuypers FA, Chiu D, Mohandas N, et al: The molecular species composition of phosphatidylcholine affects cellular properties in normal and sickle erythrocytes. Blood 70:1111–1118, 1987.

    PubMed  CAS  Google Scholar 

  61. Devaux PF: Phospholipid flipases. FEBS Lett 234:8–12, 1988.

    Article  PubMed  CAS  Google Scholar 

  62. Zachowski A, Craescu CT, Galacteros F, et al: Abnormality of phospholipid transverse diffusion in sickle erythrocytes. J Clin Invest 75:1713–1717, 1985.

    Article  PubMed  CAS  Google Scholar 

  63. Franck PFH, Beavers EM, Lubin BH: Uncoupling of the membrane skeleton from the lipid bilayer. J Clin Invest 75:183–190, 1985.

    Article  PubMed  CAS  Google Scholar 

  64. Rybicki AC, Heath R, Lubin B, et al: Human erythrocyte protein 4.1 is a phosphatidylserine binding protein. J Clin Invest 81:255–260, 1980.

    Article  Google Scholar 

  65. Schwartz RS, Tanaka Y, Fidler IJ, et al: Increased adherence of sickled and phospha-tidylserine-enriched human erythrocytes to cultured human peripheral blood monocytes. J Clin Invest 75:1965–1972, 1985.

    Article  PubMed  CAS  Google Scholar 

  66. Tomasko MA, Chudwin DS: Complement activation in sickle cell disease: A liposome model. J Lab Clin Med 112:248–253, 1988.

    PubMed  CAS  Google Scholar 

  67. Low PS, Waugh SM, Zinke K, et al: The role of hemoglobin denaturation and band 3 clustering in red blood cell aging. Science 227:531–533, 1985.

    Article  PubMed  CAS  Google Scholar 

  68. Hebbel RP, Miller W: Phagocytosis of sickle erythrocytes: Immunologic and oxidative determinations of hemolytic anemia. Blood 64:733–741, 1984.

    PubMed  CAS  Google Scholar 

  69. Snyder LM, Fortier NL, Trainor J, et al: Effect of hydrogen peroxide exposure on normal human erythrocyte deformability, morphology, surface characteristics, and spectrin-hemoglobin cross-linking. J Clin Invest 76:1971–1977, 1985.

    Article  PubMed  CAS  Google Scholar 

  70. McKenney J, Valeri CR, Mohandas N, et al: Decreased in vivo survival of oxidatively damaged red cells. Blood 72(5, Suppl l):32a, 1988.

    Google Scholar 

  71. Chiu D, Pan HC, Kuypers FA, et al: Purified ingredients from Chinese herbs protect human red cells against oxidant-induced damage. Blood 70(5) (Suppl 1):38, 1987 (abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Lubin, B., Kuypers, F., Vichinsky, E., Chiu, D. (1990). The Role of Oxidation in Diseases of the Human Erythrocyte. In: Pomerance, H.H., Bercu, B.B. (eds) Topics in Pediatrics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3230-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3230-8_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7925-9

  • Online ISBN: 978-1-4612-3230-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics