Nucleic Acid Metabolism in Trichomonas vaginalis

  • Ching C. Wang


It has been noted that all parasitic protozoa examined to date are unable to synthesize purine rings de novo. The studies on Trypanosoma cruzi 1 Leishmania braziliensis,2 Plasmodium lo-phurae,3 Trypanosoma mega,4 and Eimeria ten-ella 5 have provided well-documented cases of the lack of de novo purine nucleotide synthesis and hence the dependence of these organisms on purine salvage for survival. Some of the purine salvage enzymes in these parasites have also acquired unique properties differing from those of the host. For instance, allopurinol, a hypo-xanthine analog unimportant in the metabolism of mammalian cells, is apparently converted by hypoxanthine phosphoribosyltransferase (HPRT) in the parasites to the corresponding nucleotide and is eventually incorporated into the parasite RNA.6 These biochemical events seem to have rendered allopurinol active against Leishmania,2 African trypanosomes,7 T. cruzi,8 and E. tenella.5 Similar conversions of the purine nucleoside analogs, such as allopurinol riboside,9 formycin B,10 and 9-deazaino-sine,11 to their nucleotides have also made these compounds effective antileishmanial and antitrypanosomal agents. The purine salvage enzymes in the parasitic protozoa thus not only serve essential biologic functions, but also possess sufficiently broad substrate specificities to become potential targets for antiparasitic chemotherapy.


High Performance Liquid Chromatography Purine Nucleotide Nucleic Acid Metabolism Giardia Lamblia Adenosine Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berens RL, Marr J J, LaFon SW, Nelson DJ: Purine metabolism in Trypanosma cruzi. Mol Biochem Parasitol 3:187–196, 1981.Google Scholar
  2. 2.
    Marr J J, Berens RL: Antileishmanial effect of allopurinol. II. Relationship of adenine metabolism in Leishmania spp. to the action of allopurinol. J Infect Dis 136:724–732, 1977.Google Scholar
  3. 3.
    Walsh CJ, Sherman IW: Purine and pyrimidine synthesis by the avian malaria parasite, Plasmodium lophurae. J Protozool 15:763–770, 1968.Google Scholar
  4. 4.
    Bone GJ, Steinert M: Isotopes incorporated in the nucleic acids of Trypanosoma mega. Nature 178:308–309, 1956.PubMedCrossRefGoogle Scholar
  5. 5.
    Wang CC, Simashkevich PM: Purine metabolism in a protozoan parasite Eimeria tenella. Proc Natl Acad Sei USA 78:6618–6622, 1981.CrossRefGoogle Scholar
  6. 6.
    Marr J J, Berens RL, Nelson DJ: Antitrypanosomal effects of allopurinol: Conversion in vitro to aminopyrazolopyrimidine nucleotides by Trypanosoma cruzi. Science 201:1018–1020, 1978.Google Scholar
  7. 7.
    Berens RL, Marr J J, Brun R: Pyrazolopyrimidine metabolism in African trypanosomes: Metabolism similarities to Trypanosoma cruzi. Mol Biochem Parasitol 3:187–196, 1981.Google Scholar
  8. 8.
    Avila JL, Avila A: Trypanosoma cruzi: Allopurinol in the treatment of experimental acute Chagas’ disease. Exp Parasitol 51:204–208, 1980.CrossRefGoogle Scholar
  9. 9.
    Nelson DJ, LaFon SW, Tuttle JV, Miller WH, Miller RL, Krenitsky TA, Elion GB, Berens RL, Marr J J: Allopurinol ribonucleoside as an antileishmanial agent. J Biol Chem 254:11544–11549, 1979.PubMedGoogle Scholar
  10. 10.
    Carson DA, Chang K-P: Phosphorylation and antileishmanial activity of formycin B. Biochem Biophys Res Commun 100:1377–1383, 1981.PubMedCrossRefGoogle Scholar
  11. 11.
    Marr J J, Berens RL, Cohn NK, Nelson DJ, Klein RS: Biological action of inosine analogs in Leishmania and Trypanosoma spp. Antimicrob Agents Chemother 25:292–295, 1984.Google Scholar
  12. 12.
    Honigberg BM: Trichomonads of veterinary importance. In Kreier JP (ed): Parasitic Protozoa, vol 2, pp 164–275. New York: Academic Press, 1978.Google Scholar
  13. 13.
    Heyworth PG, Gutteridge WE, Ginger CD: Purine metabolism in Trichomonas vaginalis. FEBS Lett 141:106–110, 1982.PubMedCrossRefGoogle Scholar
  14. 14.
    Wang CC, Cheng H-W: Salvage of pyrimidine nucleosides by Trichomonas vaginalis. Mol Biochem Parasitol 10:171–184, 1984.PubMedCrossRefGoogle Scholar
  15. 15.
    Wang CC, Verham R, Rice A, Tzeng S-F: Purine salvage by Tritrichomonas foetus. Mol Biochem Parasitol 8:325–337, 1983.PubMedCrossRefGoogle Scholar
  16. 16.
    Wang CC, Verham R, Tzeng S-F, Aldritt SM, Cheng H-W: Pyrimidine metabolism in Tritrichomonas foetus. Proc Natl Acad Sei USA 80:2564–2568, 1983.CrossRefGoogle Scholar
  17. 17.
    Wang CC, Aldritt SM: Purine salvage networks in Giardia lamblia. J Exp Med 158:1703–1712, 1983.PubMedCrossRefGoogle Scholar
  18. 18.
    Aldritt SM, Tien P, Wang CC: Pyrimidine salvage in Giardia lamblia. J Exp Med 161:437–445, 1985.PubMedCrossRefGoogle Scholar
  19. 19.
    Lo H-S, Wang CC: Purine salvage in Entamoeba histolytica. J Parasitol 71:662–669, 1985.PubMedCrossRefGoogle Scholar
  20. 20.
    Albach RA, Booden T, Boonlayangoor P: Entamoeba histolytica: Autoradiographic analysis of nuclear sites of RNA synthesis. Exp Parasitol 42:248–259, 1977.PubMedCrossRefGoogle Scholar
  21. 21.
    Linstead D: New defined and semi-defined media for cultivation of the flagellate Trichomonas vaginalis. Parasitology 83:125–137, 1981.PubMedCrossRefGoogle Scholar
  22. 22.
    Wang CC, Verham R, Cheng H-W, Rice A, Wang AL: Differential effects of inhibitors of purine metabolism in two trichomonad species. Biochem Pharmacol 33:1323–1329, 1984.PubMedCrossRefGoogle Scholar
  23. 23.
    Miller RL, Linstead D: Purine and pyrimidine metabolizing activities in Trichomonas vaginalis extracts. Mol Biochem Parasitol 7:41–51, 1983.PubMedCrossRefGoogle Scholar
  24. 24.
    Hill B, Kilsby J, Rogerson GW, Mcintosh RT, Ginger CD: The enzymes of pyrimidine biosynthesis in a range of parasitic protozoa and helminths. Mol Biochem Parasitol 2:123–134, 1981.PubMedCrossRefGoogle Scholar
  25. 25.
    Wang CC, Cheng H-W: The deoxyribonucleo-side phosphotransferase of Trichomonas vaginalis: A potential target for anti-trichomonal chemotherapy. J Exp Med 160:987–1000, 1984.PubMedCrossRefGoogle Scholar
  26. 26.
    Honigberg BM, Mohn FA: An improved method for the isolation of highly polymerized native deoxyribonucleic acid from certain protozoa. J Protozool 20:146–150, 1973.PubMedGoogle Scholar
  27. 27.
    Wang AL, Wang CC: Isolation and characterization of DNA from Tritrichomonas foetus and Trichomonas vaginalis. Mol Biochem Parasitol 14:323–336, 1985.PubMedCrossRefGoogle Scholar
  28. 28.
    Borst P, Fase-Fowler F, Frasch ACC, Hoeijmak-ers JHJ, Weijers PJ: Characterization of DNA from Trypanosoma brucei and related trypanosomes by restriction endonuclease digestion. Mol Biochem Parasitol 1:221–246, 1980.CrossRefGoogle Scholar
  29. 29.
    Britten RJ, Graham DE, Neufeld BR: Analysis of repeating DNA sequences by reassociation. Methods Enzymol 29E:363–418, 1974.CrossRefGoogle Scholar
  30. 30.
    Wang AL, Wang CC: A linear double-stranded RNA in Trichomonas vaginalis. J Biol Chem 260:3697–3702, 1985.PubMedGoogle Scholar
  31. 31.
    Wang AL, Wang CC: The double-stranded RNA in Trichomonas vaginalis may be originated from virus-like particles. Proc Natl Acad Sei USA 83:7956–7960, 1986.CrossRefGoogle Scholar
  32. 32.
    Racaniello VR, Baltimore D: Cloned polio virus complementary DNA is infectious in mammalian cells. Science 214:916–919, 1981.PubMedCrossRefGoogle Scholar
  33. 33.
    Taniguchi T, Palmieri M. Weissmann C: Qß phage formation in the bacterial host. Nature 274:223–228, 1978.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Ching C. Wang

There are no affiliations available

Personalised recommendations