On the topological structure of inner functions and its use in identification of linear systems

  • Laurent Baratchart
Part of the Progress in Systems and Control Theory book series (PSCT, volume 8)


The purpose of this paper is to discuss certain topological properties of rational inner functions and some of their links with the l 2 identification scheme for stable linear dynamical control systems. The topological description we are aiming at will be reasonably complete in the scalar case only, while almost everything remains to be proved for multi variable systems. However, it is also one of our main concerns to suggest here some generalizations, with respect to the input-output dimension as well as the identification criterion.


Scalar Case Stable Polynomial Maximum Likelihood Criterion Unique Critical Point Chebyshev Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ABG]
    Alpay D., Baratchart L., Gombani A. “On the topological structure of matrix valued inner functions” in preparation.Google Scholar
  2. [AS]
    Aström K. J., Söderström T. “Uniqueness of the maximum likelihood estimates of the parameters of an ARMA model”, IEEE trans, on Aut. Control, vol 19, n 06, 1974.Google Scholar
  3. [Ba]
    Baratchart L. “Sur l’approximation rationnelle L 2 pour les systèms dynamiques linéaires” thèse de doctorat d’état, Univ. de Nice, 1987.Google Scholar
  4. [BO]
    Baratchart L., Olivi M. “Index of critical points in rational L 2 approximation” System & Control Letters 10, 1988.Google Scholar
  5. [BCO]
    Baratchart L., Cardelli M., Olivi M. “Identification and rational L 2 approximation: a gradient algorithm” to appear in Automatica.Google Scholar
  6. [BW]
    Baratchart L., Wielonsky F. “Rational approximation in the real Hardy space H 2 and Stieltjes integrals”, in preparation.Google Scholar
  7. [Ca]
    Cardelli M. “Sur l’approximation rationnelle dans H 2 de certaines fonctions de transfert” thèse de doctorat en Sciences de l’Ingénieur, à paraître, Université de Nice.Google Scholar
  8. [Fu]
    Fuhrmann P. A. “Linear Systems and Operators in Hilbert space” Mc Graw-Hill 1981.Google Scholar
  9. [HD]
    Hannan E. J., Deistler M. “The statistical Theory of Linear Systems” Series in Probability and Math. Stat., Wiley, 1988.Google Scholar
  10. [Mi]
    Milnor J. “Morse Theory”, Princeton Univ. Press, 1963.Google Scholar
  11. [Wa]
    Walsh J.L. “Interpolation and Approximation by Rational Functions in the Complex Domain” Am. Math. Soc. vol. 20, Providence 1969.Google Scholar

Copyright information

© Birkhäuser Boston 1991

Authors and Affiliations

  • Laurent Baratchart
    • 1
  1. 1.Institut National de Recherche en Informatique et AutomatiqueValbonneFrance

Personalised recommendations