Skip to main content

Local Identification of Nonlinear Systems, Bifurcations and Normal Forms

  • Chapter
Analysis of Controlled Dynamical Systems

Part of the book series: Progress in Systems and Control Theory ((PSCT,volume 8))

Abstract

We describe a local identification procedure for a class of nonlinear systems having bifurcations of known codimension. To perform such an algorithm, it is required that the tangent linear model at the bifurcation and the codimension of this bifurcation are known. We also assume that the measurements of the inputs and outputs are not corrupted by random noise. A vector field and an output function depending on the time derivatives of the inputs can thus be obtained by means of the normal form associated to the “cascade” of bifurcations produced by successively using inputs which are constant, affine with respect to time, quadratic and so on. Numerical methods are sketched.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.V. Anosov and V.I. Arnold, Dynamical Systems I, II. Encyclopaedia of Mathematical Sciences, Vol. 1, Springer-Verlag, 1988.

    Google Scholar 

  2. E. Beltrami, Mathematics for Dynamic Modeling. Academic Press, 1987.

    Google Scholar 

  3. S. A. Billings, Identification of nonlinear systems — a survey. IEE PROC., 127, D, 6, 272–285, 1980.

    Google Scholar 

  4. G. Bornard and L. Hu, Affine realizations of multimodels, characterization, stability, identification. Proc. Conf. Int. Automatique non Linéaire, Nantes, 1988.

    Google Scholar 

  5. L. O. Chua, Dynamic nonlinear networks: state-of-the-art. IEEE. Trans. Circuits Systems, 27, 1980, 1059–1087.

    Article  Google Scholar 

  6. D. Claude, Automatique et régulation biologique. Lect. Notes in Control and Information Sciences, Vol. 122, Springer-Verlag, 1989, 496–507.

    Google Scholar 

  7. D. Claude, Control theory and biological regulations: bipolar controls. In Modeling and Control of Systems, A. Blaquière ed., Lect. Notes in Control & Information Sciences, Vol. 121, Springer-Verlag, 1989, 293–298.

    Chapter  Google Scholar 

  8. H. Dang Van Mien and D. Normand-Cyrot, Nonlinear state affine identification methods: applications to electrical power plants. Automatica, 20, 2, 1984, 175–188.

    Article  Google Scholar 

  9. M. Demazure, Géométrie, Catastrophes et Bifurcations. École Polytechnique, Département de Mathématiques, 1987.

    Google Scholar 

  10. H. Diaz and A. A. Desrochers, Modeling of nonlinear discrete-time systems from input-output data. Proc. of the 10th IFAC World Congress, Munich, 1987.

    Google Scholar 

  11. D. Dochain and G. Bastin, Adaptive identification and control algorithms for nonlinear bacterial growth systems. Automatica, 20, 5, 1984, 621–634.

    Article  Google Scholar 

  12. M. Fliess, Generalized controller canonical form for linear and nonlinear systems, to appear in IEEE Trans. Automatic Control.

    Google Scholar 

  13. M. Fliess, M. Lamnabhi and F. Lamnabhi-Lagarrigue, An algebraic approach to nonlinear functional expansions. IEEE Trans. Circuits and Systems, 30, 8, 1983, 554–570.

    Article  Google Scholar 

  14. S.T. Glad, Nonlinear state space and input output descriptions using differential polynomials. Lect. Notes in Control and Information Sciences, Vol. 122, Springer-Verlag, 1989, 182–189.

    Google Scholar 

  15. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer-Verlag, 1983.

    Google Scholar 

  16. R. Haber and H. Unbehauen, Structure identification of nonlinear dynamic systems — a survey on input/output approaches. Automatica, Vol. 26, N. 4, 1990, 651–677.

    Article  Google Scholar 

  17. M. Hasler and J. Neirynck, Circuits Non Linéaires. Presses Polytechniques Romandes, Lausanne, 1985.

    Google Scholar 

  18. L. Hu, Équivalence au premier ordre des systèmes non linéaires. Thèse, Institut National Polytechnique de Grenoble, 1990.

    Google Scholar 

  19. A. Isidori, Nonlinear Control Systems. 2nd Edition, Springer-Verlag, 1989.

    Google Scholar 

  20. A. Johnson, The control of fed-batch fermentation processes — a survey. Automatica, 23, 6, 1987, 691–705.

    Article  Google Scholar 

  21. M. Kortmann and H. Unbehauen, Identification methods for nonlinear MISO systems. Proc. of the 10th IFAC World Congress, Munich, 1987.

    Google Scholar 

  22. A. J. Krener, S. Karahan and M. Hubbard, Approximate normal forms of nonlinear systems. Proc. 27th CDC, Austin, Texas, Dec. 1988, 1223–1229.

    Google Scholar 

  23. A. J. Krener, Nonlinear controller design via approximate normal forms. in Signal Processing, Part II: Control Theory and Applications, edited by F.A. Grünbaum, J.W. Helton and P. Khargonekar, IMA volumes in Mathematics and its Applications, Vol. 23, Springer-Verlag, 1990, 139–154.

    Google Scholar 

  24. J. Lévine, Remarks on some worked out applications of nonlinear control theory. Lect. Notes in Control and Information Sciences, Vol. 122, Springer-Verlag, 1989, 445–458.

    Google Scholar 

  25. C. Monneron, Sur une méthode d’identification non linéaire. Rapport de Stage, Option Mathématiques et Automatique, École Polytechnique, 1988.

    Google Scholar 

  26. R. H. Rand and D. Armbruster, Perturbations Methods, Bifurcation Theory and Computer Algebra Springer-Verlag, 1987.

    Book  Google Scholar 

  27. R. Rosen, Dynamical System Theory in Biology. Wiley Interscience, New York, 1970.

    Google Scholar 

  28. W. Rugh, Nonlinear System Theory. The Volterra-Wiener Approach. The Johns Hopkins University Press, Baltimore, 1981.

    Google Scholar 

  29. A.J. van der Schaft, On realization of nonlinear systems described by higher-order differential equations. Math. Systems Theory, 19, 239–275, 1987.

    Article  Google Scholar 

  30. J.L. Wang and W. Rugh, Parametrized linear systems and linearization families for nonlinear systems. IEEE Trans. Circuits and Systems, Vol CAS-34, N.6, 1987.

    Google Scholar 

  31. J.C. Willems, From time series to linear system — Parts I, II, III. Automatica, Part I: 22, 5, 561–580, 1986

    Article  Google Scholar 

  32. J.C. Willems, From time series to linear system — Parts I, II, III. Automatica, Part II: 22, 6, 675–694, 1986

    Google Scholar 

  33. J.C. Willems, From time series to linear system — Parts I, II, III. Automatica, Part III: 23, 1, 87–115, 1987.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Birkhäuser Boston

About this chapter

Cite this chapter

Cohen de Lara, M., Lévine, J. (1991). Local Identification of Nonlinear Systems, Bifurcations and Normal Forms. In: Bonnard, B., Bride, B., Gauthier, JP., Kupka, I. (eds) Analysis of Controlled Dynamical Systems. Progress in Systems and Control Theory, vol 8. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-3214-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3214-8_28

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7835-1

  • Online ISBN: 978-1-4612-3214-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics