Skip to main content

Variant Diacylglycerol—Dependent Protein Phosphotransferase Activity in Ovarian Tissues

  • Chapter

Part of the book series: Serono Symposia USA ((SERONOSYMP))

Abstract

Protein phosphorylation has been implicated as a key response to gonadotropic stimulation of ovarian cells. The second messenger systems, which would act by control of protein phosphorylation, include the adenylate cyclase/cAMP/A-kinase system (1) and the phosphoinositide hydrolysis system (2). Hydrolysis of phospatidylinositol 4,5-bisphosphate leads to the generation of 1,2-diacylglycerol, activation of diacylglycerol-dependent protein kinases (the C-kinases) (2, 3), and the generation of inositol 1,4,5- triphosphate, promoting release of Ca++(2) and activation of Ca++/ calmodulin-dependent kinases (1). Ovarian tissues have been shown to contain protein kinases in each of the above classes. The functional significance of each class of protein kinases is not yet fully defined, but the existence of hormone-regulated parameters for each class of kinase in the ovary suggests that the kinases participate in the mediation of or modulation of hormone-regulated cellular responses. Ovarian A-kinases are regulated acutely (4) and chronically (5) by gonadotropic stimulation. Estrogen is also required for stimulated levels of mRNA for A-kinase regulatory subunit (RIIβ) in the rat granulosa cell (6). Ca++/calmodulin kinase III, which phosphorylates the protein synthesis elongation factor EF2, is regulated by estrogen in the rat corpus luteum of pregnancy (7). Levels of lipid-derived second messengers, 1,2-diacylglycerol (DAG) and inositol 1,4,5-triphosphate, are regulated by gonadotropin, prostaglandin, and GnRH exposure in ovarian cells (8–11).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Edelman AM, Blumenthal DK, Krebs EG. Protein serine/threonine kinases. Annu Rev Biochem 1987; 56: 567 – 613.

    Article  PubMed  CAS  Google Scholar 

  2. Berridge MJ. Inositol trisphosphate and diacylglycerol: Two interacting second messengers. Annu Rev Biochem 1987; 56: 159 – 93.

    Article  PubMed  CAS  Google Scholar 

  3. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 1984; 308: 693 – 8.

    Article  PubMed  CAS  Google Scholar 

  4. Hunzicker-Dunn M. Selective activation of rabbit ovarian protein kinase isozymes in rabbit ovarian follicles and corpora lutea. J Biol Chem 1981; 256: 12185 – 93.

    PubMed  CAS  Google Scholar 

  5. Richards JS, Jahnsen T, Hedin L, et al. Ovarian follicular development: From physiology to molecular biology. Recent Prog Horm Res 1987; 43: 231 – 76.

    PubMed  CAS  Google Scholar 

  6. Hedin L, McKnight GS, Lifka J, Durica JM, Richards JS. Tissue distribution and hormonal regulation of messenger ribonucleic acid for regulatory and catalytic subunits of adenosine 3’, 5’-monophosphate-dependent protein kinases during ovarian follicular development and luteinization in the rat. Endocrinology 1987; 120: 1928 – 35.

    Article  PubMed  CAS  Google Scholar 

  7. Rao MC, Palfrey HC, Nash NT, Greisman A, Jayatilak, PG, Gibori G. Effects of estradiol on calcium-specific protein phosphorylation in the rat corpus luteum. Endocrinology 1987; 120: 1010 – 8.

    Article  PubMed  CAS  Google Scholar 

  8. Davis JS, Weakland LL, Farese RV, West LA. Luteinizing hormone increases inositol trisphosphate and cytosolic free Ca2+ in isolated bovine luteal cells. J Biol Chem 1987; 262: 8515 – 21.

    PubMed  CAS  Google Scholar 

  9. Davis JS, Weakland LL, Weiland DA, Farese RV, West LA. Prostaglandin F2α stimulates phosphatidylinositol-4, 5-biphosphate hydrolysis and mobilizes intracellular Ca2+ in bovine luteal cells. Proc Natl Acad Sci USA 1987; 84: 3728 – 32.

    CAS  Google Scholar 

  10. Leung PCK, Minegishi T, Ma F, Zhow F, Ho-Yuen B. Induction of polyphosphoinositide breakdown in rat corpus luteum by prostaglandin F2α.Endocrinology 1986; 119: 12 – 8.

    CAS  Google Scholar 

  11. Ma F, Leung PCK. Luteinizing hormone-releasing hormone enhances polyphosphoinositide breakdown in rat granulosa cells. Biochem Biophys Res Commun 1985; 130: 1201 – 8.

    Article  PubMed  CAS  Google Scholar 

  12. Davis JS, Clark MR. Activation of protein kinase in the bovine corpus luteum by phospholipid and Ca2+. Biochem J 1983; 214: 569 – 74.

    PubMed  CAS  Google Scholar 

  13. Wheeler MB, Veldhuis JD. Catalytic and receptor-binding properties of the calcium-sensitive phospholipid-dependent protein kinase (protein kinase C) in swine luteal cytosol. Mol Cell Endocrinol 1987; 50: 123 – 9.

    Article  PubMed  CAS  Google Scholar 

  14. Noland TA, Jr, Dimino MJ. Characterization and distribution of protein kinase C in ovarian tissue. Biol Reprod 1986; 35: 863 – 72.

    Article  PubMed  CAS  Google Scholar 

  15. Hoyer PB, Kong W. Protein kinase A and C activities and endogenous substrates in ovine small and large luteal cells. Mol Cell Endocrinol 1989; 62: 203 – 15.

    Article  PubMed  CAS  Google Scholar 

  16. Su H-D, Mazzei GJ, Vogler WR, Kuo JF. Effect of tamoxifen, a nonsteroidal antiestrogen on phospholipid/calcium-dependent protein kinase and phosphorylation of its endogenous substrate proteins from the rat brain and ovary. Biochem Pharmacol 1985; 34: 3649 – 53.

    Article  PubMed  CAS  Google Scholar 

  17. Dowd JP, Alila HW, Hansel W. Phorbol ester receptors in bovine luteal cells: Relationship to protein kinase C. Mol Cell Endocrinol 1990; 69: 199 – 206.

    CAS  Google Scholar 

  18. Bell RM. Protein kinase C activation by diacylglycerol second messengers. Cell 1986; 45: 631 – 2.

    Article  PubMed  CAS  Google Scholar 

  19. Murakami K, Chan SY, Routtenberg A. Protein kinase C activation by cis-fatty acid in the absence of Ca2+ and phospholipids. J Biol Chem 1986; 261: 15424 – 9.

    PubMed  CAS  Google Scholar 

  20. O’Brian CA, Arthur WL, Weinstein IB. The activation of protein kinase C by the polyphosphoinositides phosphatidylinositol 4,5-diphosphate and phosphatidylinositol 4-monophosphate. FEBS Lett 1987; 214: 339 – 42.

    Article  PubMed  Google Scholar 

  21. Chauhan A, Chauhan VPS, Deshmukh DS, Brockerhoff H. Phosphatidylinositol 4,5-bisphosphate competitively inhibits phorbol ester binding to protein kinase C. Biochemistry 1989; 28: 4952 – 6.

    Article  PubMed  CAS  Google Scholar 

  22. Oishi K, Raynor RL, Charp PA, Kuo JF. Regulation of protein kinase C by lysophospholipids: Potential role in signal transduction. J Biol Chem 1988; 263: 6865 – 71.

    PubMed  CAS  Google Scholar 

  23. Shoyab M, Boaze R. Isolation and characterization of a specific receptor for biologically active phorbol and ingenol esters. Arch Biochem Biophys 1984; 234: 197 – 205.

    Article  PubMed  CAS  Google Scholar 

  24. Bazzi MD, Nelsestuen GL. Role of substrate in imparting calcium and phospholipid requirements to protein kinase C activation. Biochemistry 1987; 26: 1974 – 82.

    Article  PubMed  CAS  Google Scholar 

  25. O’Brian CA, Lawrence DS, Kaiser ET, Weinstein IB. Protein kinase C phosphorylates the synthetic peptide arg-arg-lys-ala-ser-gly-pro-pro-val in the presence of phospholipid plus either Ca2+ or a phorbol ester tumor promotor. Biochem Biophys Res Commun 1984; 124: 296 – 302.

    Article  PubMed  Google Scholar 

  26. Klemm DJ, Elias L. A distinctive phospholipid-stimulated protein kinase of normal and malignant murine hemopoietic cells. J Biol Chem 1987; 262: 7580 – 85.

    PubMed  CAS  Google Scholar 

  27. Gonzatti-Haces MI, Traugh JA. Ca2+-independent activation of protease-activated kinase II by phospholipids/diolein and comparison with the Ca2+/phospholipid-dependent protein kinase. J Biol Chem 1986; 261: 15266 – 72.

    PubMed  CAS  Google Scholar 

  28. Malviya AN, Louis J-C, Zwiller J. Separation from protein kinase C—a calcium- independent TPA-activated phosphorylating system. FEBS Lett 1986; 199: 213 – 6.

    Article  PubMed  CAS  Google Scholar 

  29. Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 1988; 334: 661 – 5.

    Article  PubMed  CAS  Google Scholar 

  30. Parker PJ, Kour G, Marais RM, et al. Protein kinase C—a family affair. Mol Cell Endocrinol 1989; 65: 1 – 11.

    Article  PubMed  CAS  Google Scholar 

  31. Huang K-P, Nakabayashi H, Huang FL. Isozymic forms of rat brain Ca2+- activated and phospholipid-dependent protein kinase. Proc Natl Acad Sci USA 1986; 83: 8535 – 9.

    Article  PubMed  CAS  Google Scholar 

  32. Ono Y, Fujii T, Ogita K, Kikkawa U, Igarashi K, Nishizuka Y. The structure, expression and properties of additional members of the protein kinase C family. J Biol Chem 1988; 263: 6927 – 32.

    PubMed  CAS  Google Scholar 

  33. Ohno S, Akita Y, Konno Y, Imajoh S, Suzuki K. A novel phorbol ester receptor/ protein kinase, nPKC, distantly related to the protein kinase C family. Cell 1988; 53: 731 – 41.

    Article  PubMed  CAS  Google Scholar 

  34. Schaap D, Parker PJ, Bristol A, Kriz R, Knopf J. Unique substrate specificity and regulatory properties of PKC-ε: A rationale for diversity. FEBS Lett 1989; 243: 351 – 7.

    Article  PubMed  CAS  Google Scholar 

  35. Farago A, Farkas G, Meszaros G, Buday L, Antoni F, Seprodi J. Isoenzyme patterns of protein kinase C and a phospholipid-dependent but Ca2+-inhibited enzyme fraction in the crude extracts of different tissues. FEBS Lett 1989; 243: 328 – 32.

    Article  PubMed  CAS  Google Scholar 

  36. Ryves WJ, Garland LG, Evans AT, Evans FJ. A phorbol ester and a daphnane ester stimulate a calcium-independent kinase activity from human mononuclear cells. FEBS Lett 1989; 245: 159 – 63.

    Article  PubMed  CAS  Google Scholar 

  37. Hashimoto K, Kishimoto A, Aihara H, Yasuda I, Mikawa K, Nishizuka Y. Protein kinase C during differentiation of human promyelocytic leukemia cell line, HL-60. FEBS Lett 1990; 263: 31 – 4.

    Article  PubMed  CAS  Google Scholar 

  38. Hashimoto K, Kishimoto A, Aihara H, Yasuda I, Mikawa K, Nishizuka Y. Protein kinase C during differentiation of human promyelocytic leukemia cell line, HL-60. FEBS Lett 1990; 263: 31 – 4.

    Article  PubMed  CAS  Google Scholar 

  39. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265 – 75.

    PubMed  CAS  Google Scholar 

  40. Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 1985; 260: 3440 – 50.

    PubMed  CAS  Google Scholar 

  41. Rudolph SA, Krueger BK. Endogenous protein phosphorylation and dephosphorylation. Adv Cyclic Nucleotide Res 1979; 10: 107 – 33.

    PubMed  CAS  Google Scholar 

  42. Marais RM, Parker PJ. Purification and characterization of bovine brain protein kinase C isotypes α, β and γ. Eur J Biochem 1989; 182: 129 – 37.

    Article  PubMed  CAS  Google Scholar 

  43. Gschwendt M, Leibersperger H, Marks F. Differentiative action of K252a on protein kinase C and a calcium-unresponsive, phorbol ester/phospholipid-activated protein kinase. Biochem Biophys Res Commun 1989; 164: 974 – 82.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Maizels, E.T., Jackiw, V., Miller, J.B., Cutler, R.E., Carney, E.M., Hunzicker-Dunn, M. (1991). Variant Diacylglycerol—Dependent Protein Phosphotransferase Activity in Ovarian Tissues. In: Gibori, G. (eds) Signaling Mechanisms and Gene Expression in the Ovary. Serono Symposia USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3200-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3200-1_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7830-6

  • Online ISBN: 978-1-4612-3200-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics