Oxysterols: Regulation of Biosynthesis and Role in Controlling Cellular Cholesterol Homeostasis in Ovarian Cells

  • Jerome F. StraussIII
  • Hannah Rennert
  • Ritsu Yamamoto
  • Lee-Chuan Kao
  • Juan G. Alvarez
Part of the Serono Symposia USA book series (SERONOSYMP)

Abstract

Steroid-producing cells obtain cholesterol for use in hormone synthesis by de novo synthesis from acetyl co-enzyme A or through accumulation of cholesterol from circulating lipoproteins. Tropic hormones, which augment steroidogenesis (e.g., pituitary gonadotropins acting on ovarian cells), increase both de novo sterol synthesis and lipoprotein cholesterol uptake. Recent review articles summarize the various observations documenting this regulation (1-4).

Keywords

Cholesterol Progesterone NADPH Diol Choles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gwynne JT, Strauss JF, III. The role of lipoproteins in steroidogenesis and cholesterol metabolism in steroidogenic glands. Endocr Res 1982; 3: 299 – 329.CrossRefGoogle Scholar
  2. 2.
    Strauss JF, ID, Schuler LA, Rosenblum MF, Tanaka T. Cholesterol metabolism by ovarian tissue. Adv Lipid Res 1981; 19: 99 – 159.Google Scholar
  3. 3.
    Murphy BD, Silavin SL. Luteotrophic agents and steroid substrate utilization. Oxf Rev Reprod Biol 1989; 11: 179 – 223.PubMedGoogle Scholar
  4. 4.
    Gwynne JT, Mahafee DD. Lipoproteins and steroid hormone-producing tissues. Methods Enzymol 1986; 129: 679 – 90.PubMedCrossRefGoogle Scholar
  5. 5.
    Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature 1990; 343: 425 – 30.PubMedCrossRefGoogle Scholar
  6. 6.
    Golos TG, Strauss JF, III. 8-bromoadenosine cyclic 3’, 5’-phosphate rapidly increases 3-hydroxy-3-methylglutaryl coenzyme A reductase mRNA in human granulosa cells: Role of cellular sterol balance in controlling the response to tropic stimulation. Biochemistry 1988; 27: 3503 – 6.PubMedCrossRefGoogle Scholar
  7. 7.
    Kandutsch AA, Chen HW, Heiniger HJ. Biological activity of some oxygenated sterols. Science 1978; 201: 498 – 501.PubMedCrossRefGoogle Scholar
  8. 8.
    Taylor FR, Kandutsch AA. Oxysterol binding protein. Chem Phys Lipids 1985; 38: 187 – 94.PubMedCrossRefGoogle Scholar
  9. 9.
    Dawson PA, Ridgway ND, Slaughter CA, Brown MS, Goldstein JL. cDNA cloning and expression of oxysterol-binding protein, an oligomer with a potential leucine zipper. J Biol Chem 1989; 264: 16798 – 803.PubMedGoogle Scholar
  10. 10.
    Rajavashisth TB, Taylor AK, Andalibi A, Svenson KL, Lusis AJ. Identification of a zinc finger protein that binds to the sterol regulatory element. Science 1989; 254: 640 – 3.CrossRefGoogle Scholar
  11. 11.
    Feldman D. Ketoconazole and other imidazole derivatives as inhibitors of steroidogenesis. Endocr Res 1986; 7: 409 – 20.CrossRefGoogle Scholar
  12. 12.
    Takagi K, Alvarez JG, Favata MF, Trzaskos JM, Strauss JF, HI. Control of low density lipoprotein receptor gene promoter activity: Ketoconazole inhibits serum lipoprotein but not oxysterol suppression of gene transcription. J Biol Chem 1989; 264: 12352 – 7.PubMedGoogle Scholar
  13. 13.
    Gupta A, Sexton RC, Rudney H. Modulation of regulatory oxysterol formation and low density lipoprotein suppression of 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase activity by ketoconazole. A role for cytochrome P450 in the regulation of HMG-CoA reductase in rat intestinal epithelial cells. J Biol Chem 1986; 261: 8348 – 56.PubMedGoogle Scholar
  14. 14.
    Dhar AK, Teng JI, Smith LL. Biosynthesis of cholest-5-ene-3β, 24 diol (cerebrosterol) by bovine cerebral cortical microsomes. J Neurochem 1973; 21: 51 – 60.PubMedCrossRefGoogle Scholar
  15. 15.
    Wikvall K. Hydroxylations in biosynthesis at bile acids isolation of a cytochrom P450 from rabbit liver mitochondria catalyzing 26-hydroxylation of C27-steroids. J Lipid Res 1976; 17: 366 – 72.Google Scholar
  16. 16.
    Oftebro H, Bjorkhem I, Skrede S, Schreiner A, Pedersen JI. Cerebrotendinous xanthomatosis. A defect in mitochondrial 26-hydroxylation required for normal biosynthesis of cholic acid. J Clin Invest 1980; 65: 1418 – 30.PubMedCrossRefGoogle Scholar
  17. 17.
    Schuler LA, Scavo L, Kirsch TM, Flickinger GL, Strauss, JF, IE. Regulation of de novo biosynthesis of cholesterol and progestins, and formation of cholesteryl ester in rat corpus luteum by exogenous sterol. J Biol Chem 1979; 254: 8662 – 69.PubMedGoogle Scholar
  18. 18.
    Rennert H, Fischer RJ, Alvarez JG, Trzaskos JM, Strauss JF, III. Generation of regulatory oxysterols: 26-hydroxylation of cholesterol by ovarian mitochrondria. Endocrinology 1990; 127: 738 – 746.PubMedCrossRefGoogle Scholar
  19. 19.
    Andersson S, Davis DL, Dahlbeck H, Jornvall H, Russell DW. Cloning, structure, and expression of the mitochondrial cytochrome P450 sterol 26-hydroxy¬lase, a bile acid biosynthetic enzyme. J Biol Chem 1989; 264: 8222 – 9.PubMedGoogle Scholar
  20. 20.
    Oonk RB, Krasnow JS, Beattie WG, Richards JS. Cyclic AMP-dependent and -independent regulation of cholesterol side-chain cleavage cytochrome P450 (P-450scc) in rat ovarian granulosa cells and corpora lutea cDNA and deduced amino acid sequence of rat P-450scc. J Biol Chem 1989; 264: 21934 – 42.PubMedGoogle Scholar
  21. 21.
    Koritz SB, Hall PF. End-product inhibition of the conversion of cholesterol to pregnenolone in an adrenal extract. Biochemistry 1964; 9: 1298 – 1304.CrossRefGoogle Scholar
  22. 22.
    Simpson ER, Jefcoate CR, McCarthy JL, Boyd GL. Effect of calcium ions on steroid-binding spectra and pregnenolone formation in rat-adrenal mitochondria. Eur JBiochem 1974; 45: 181 – 188.CrossRefGoogle Scholar
  23. 23.
    Lidström-Olsson B, Wikvall D. The role of sterol carrier protein2 and other hepatic lipid-binding proteins in bile-acid biosynthesis. Biochem J 1986; 238: 870 – 84.Google Scholar
  24. 24.
    Billheimer JT, Strehl LL, Davis GL, Strauss JF, III, Davis LG. Characterization of a cDNA encoding rat sterol carrier protein2. DNA 1990; 9: 159 – 65.CrossRefGoogle Scholar
  25. 25.
    Schuler LA, Toaff ME, Strauss JF, III. Control of 3-hydroxy-3-methylglutaryl coenzyme A reductase and acyl coenzyme A: Cholesterol acyl transferase. Endocrinology 1981; 108: 1476 – 86.PubMedCrossRefGoogle Scholar
  26. 26.
    Azhar S, Chen YDI, Reaven GM. Gonadotropin modulation of 3-hydroxy-3- methylglutaryl coenzyme A reductase activity in desensitized luteinized rat ovary. Biochemisty 1984; 23: 4533 – 8.CrossRefGoogle Scholar
  27. 27.
    Puryear TK, Mclean MP, Khan I, Gibori G. Mechanism for control of hydroxy- methylglutaryl coenzyme A reductase and cytochrome P450 side-chain cleavage message and enzyme in corpus luteum. Endrocrinology 1990; 126: 2910 – 8.CrossRefGoogle Scholar
  28. 28.
    Toaff ME, Schleyer H, Strauss JF, EI. Metabolism of 25-hydroxycholesterol by rat luteal mitochondria and dispersed cells. Endocrinology 1982; 111: 1785 – 90.PubMedCrossRefGoogle Scholar
  29. 29.
    Krisans SK, Thompson SL, Pena LA, Kok E, Javitt NB. Bile acid synthesis in rat liver peroxisomes: Metabolism of 26-hydroxycholesterol to 3β-hydroxy-5- cholenoic acid. J Lipid Res 1985; 26: 1324 - 32.PubMedGoogle Scholar
  30. 30.
    Gal D, MacDonald PC, Simpson ER. Cholesterol metabolism in human cancer cells in monolayer, V. The effect of progesterone in the regulation of 3-hydroxy- 3-methylglutaryl coenzyme A reductase activity by low density lipoprotein. J Clin Endocrinol Metab 1981; 53: 29 – 33.PubMedCrossRefGoogle Scholar
  31. 31.
    Panini SR, Grupta A, Sexton RC, Parish EJ, Rudney A. Regulation of sterol biosynthesis and 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in cultured cells by progesterone. J Biol Chem 1987; 262: 14435 – 40.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1991

Authors and Affiliations

  • Jerome F. StraussIII
  • Hannah Rennert
  • Ritsu Yamamoto
  • Lee-Chuan Kao
  • Juan G. Alvarez

There are no affiliations available

Personalised recommendations