The Di-decameric Hemocyanin of the Atlantic Murex Snail, Muricanthus fulvescens (Sowerby)

  • Theodore T. Herskovits
  • Curley Kieran
  • Michelle D. Edwards
  • Mary G. Hamilton
Conference paper


The sedimentation studies of Svedberg and co-workers (1,2) of the respiratory proteins of various species of vertebrates and invertebrates, including the Hcs of the gastropods of the phylum Mollusca, have suggested that these Hcs consist largely of a single type of particle characterized by a sedimentation coefficient of about 100 S and having a particle mass close to 9,000 kDa. Only a few Hcs, such as those of the channeled whelk, Busycon canaliculatum, and the giant garden slug, Umax maximus, were found to have minor amounts of components sedimenting with a higher rate close to 130 S. More recent investigations by our group and others (3) have shown that many gastropod Hcs consist of a mixture of higher aggregates with sedimentation coefficients of about 100 S, 130 S, 150 S, 170 S and even higher, 200 to 230 S, corresponding to di-, tri-, tetra-, penta-, and larger multi-decameric units (4, 5). Scanning transmission electron microscopy (STEM) measurements gave particle masses ranging from 8,900 for the di-deeamer to 43,400 kDa for the largest, 10 unit aggregate of Busycon contrarium in the Melongenidae family (4,5). Three additional groups of Hcs from the Naticidae or moon snail family (3,6), the opisthobranch or seahare group, Aplysia vaccaria (unpublished data), Aplysia limacina (7), and Dolabella auricularia (8), and the recently discovered protobranch bivalves, Yoldia limatula and Yoldia thraciaeformis (9) show analogous ranges of aggregates, from essentially all di-decamers in Calinaticina oldroydii (6), A. vaccaria, and Y. limatula (9), to higher polymeric aggregates exemplified by the Hcs from D. auricularia (8) and Y. thraciaeformis (9


Circular Dichroism Intrinsic Viscosity Scan Transmission Electron Microscopy Sedimentation Coefficient Unit Aggregate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eriksson-Quensel, I.-B. and Svedberg, T. (1936) Biol. Bull. 71: 498–547.CrossRefGoogle Scholar
  2. 2.
    Svedberg, T. and Pedersen, K.O. (1940) The Ultracentrifuge. Oxford: Oxford University Press, 355–372.Google Scholar
  3. 3.
    Herskovits, T.T., Mazzella, L.J. and Villanueva, G.B. (1985) Biochemistry 24: 3862–3870.PubMedCrossRefGoogle Scholar
  4. 4.
    Herkovits, T.T., Blake, P.A., Gonzalez, J.A., Hamilton, M.G. and Wall, J.S. (1989) Comp. Biochem. Physiol. 94B: 415–421.Google Scholar
  5. 5.
    Hamilton, M.G., Herskovits, T.T., Furcinitti, P.S. and Wall, J.S. (1989) J. Ultrastruct. Mol. Struct. Res. 102: 221–228.PubMedCrossRefGoogle Scholar
  6. 6.
    Hamilton, M.G., Herskovits, T.T. and Wall, J.S. (1990) Proc. Xllth Int. Congr. for Electron Microscopy, 810-811.Google Scholar
  7. 7.
    Ghiretti-Magaldi, A., Salvato, B., Tallandini, B. and Beltramini, M. (1979) Comp. Biochem. Physiol. 62A: 579–584.CrossRefGoogle Scholar
  8. 8.
    Makino, N. (1971)J. Biochem. 70: 149–155.PubMedGoogle Scholar
  9. 9.
    Terwilliger, N.B., Terwilliger, R.C., Meyhofer, E. and Morse, M.P. (1988) Comp. Biochem. Physiol. 89B: 189–195.Google Scholar
  10. 10.
    Savel-Niemann, A., Wegener-Strake, A. and Markl, J. (1991) In Invertebrate Dioxygen Carriers, ed. G. Preaux. Leuven: Leuven University Press. In press.Google Scholar
  11. 11.
    Senozan, N.M., Landrum, J., Bonaventura, J. and Bonaventura, C. In Invertebrate Oxygen Binding Proteins: Structure, Active Site, and Function, eds. J. Lamy and J. Lamy, 703-718. New York: Marcel Dekker.Google Scholar
  12. 12.
    Brouwer, M., Ryan, M., Bonaventura, J. and Bonaventura, C. (1978) Biochemistry 17: 2810–2815.PubMedCrossRefGoogle Scholar
  13. 13.
    Herskovits, T.T., Blake, P.A. and Hamilton, M.G. (1988) Comp. Biochem. Physiol. 90B: 869–874.Google Scholar
  14. 14.
    Wood, E.J. and Peacocke, A.R. (1973) Eur. J. Biochem. 35: 410–420.PubMedCrossRefGoogle Scholar
  15. 15.
    Herskovits, T.T. (1988) Comp. Biochem. Physiol. 91B: 597–611.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1991

Authors and Affiliations

  • Theodore T. Herskovits
    • 1
  • Curley Kieran
    • 1
  • Michelle D. Edwards
    • 2
  • Mary G. Hamilton
    • 2
  1. 1.Department of ChemistryFordham UniversityBronxUSA
  2. 2.Division of Science and MathematicsFordham UniversityNew YorkUSA

Personalised recommendations