Compound Poisson-Processes

  • Donald L. Snyder
  • Michael I. Miller
Part of the Springer Texts in Electrical Engineering book series (STELE)


One motivation for the model we develop in this chapter is provided by the atmospheric-noise data shown in Fig. 1.3. It is evident that a point process model can account for the occurrence times of the pulses. However, these times alone do not reflect all of the significant features. The amplitudes of the pulses exhibit wide variation and have a strong influence on a radio receiver operating at low frequencies. Even a first-approximation model for low-frequency atmospheric noise should, therefore, include the amplitude as well as occurrence time of each pulse. It is this procedure of endowing each temporal point with an ancillary variable, an amplitude in this instance, which characterizes the models of this chapter.


Poisson Process Occurrence Time Counting Process Independent Increment Disjoint Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Breiman, Probability, Addison-Wesley, Reading MA., 1968.MATHGoogle Scholar
  2. 2.
    I. I. Gikhman and A. V. Skorokhod, Introduction to the Theory of Random Processes, Saunders, Philadelphia, PA., 1969.Google Scholar
  3. 3.
    J. A. Jacques, “Tracer Kinetics” in: Principles of Nuclear Medicine (H. N. Wagner, Jr., Ed.), Saunders, Philadelphia, 1968.Google Scholar
  4. 4.
    D. Konig and K. Matthes, “Verallgemeinerungen den Erlangsche Formeln,” I. Math. Nachr., Vol. 26,pp. 45–56, 1963.MathSciNetCrossRefGoogle Scholar
  5. 5.
    M. A. Mintun, M. E. Raichle, W. R. W. Martin, and P. Herscovitch,“Brain Oxygen Utilization Measured with 15O Radiotracers and Positron Emission Tomography,” J. Nuclear Medicine, Vol. 25, No. 2, pp. 177–187,1984.Google Scholar
  6. 6.
    K. Matthes, “Stationare Zufallige Puntfolgen,” I. Jber. Deutsch. Math.-Verein, Vol. 66, pp. 66–79,1963.MathSciNetGoogle Scholar
  7. 7.
    K. Matthes, “Unbeschrankt Teilbare Verteilumsgestze Stationarer Zufalliger Puntfolgen,” Wiss. Z. Hochsch. Electro. Ilmenau, Vol. 9, pp. 235–238, 1963.MathSciNetGoogle Scholar
  8. 8.
    N. Mullani and H. Huang, “Gamma Camera Calibration Procedures and Programs,” Ch. 12 in: Computer Processing of Dynamic Images from an Anger Scintillation Camera, (K. B. Larson and J. R. Cox, Jr., Ed’s.), Proc. Gamma Camera Workshop, Washington University, St. Louis, Mo., Society of Nuclear Medicine, 1971.Google Scholar
  9. 9.
    D. A. Ross and C. C. Harris, “Measurement of Radioactivity,” Ch. V in: Principles of Nuclear Medicine, (H. N. Wagner, Ed.), Saunders, Philadelphia, PA., 1968.Google Scholar
  10. 10.
    B. J. Slocumb, “Position-Sensing Algorithms for Optical Communications,” M.S. Thesis, Department of Electrical Engineering, Washington University, St. Louis, 1988.Google Scholar
  11. 11.
    B.J. Slocumb and D. L. Snyder, “Maximum Likelihood Estimation Applied to Quantum-Limited Optical Position-Sensing,” Proc. SPIE Technical Symp. on Optical Engineering and Photonics in Aerospace Sensing, Orlando, FL, April 1990.Google Scholar
  12. 12.
    D. L. Snyder, “Parameter Estimation for Dynamic Studies in Emission- Tomography Systems Having List-Mode Data,” IEEE Transactions on Nuclear Science, Vol. NS-31, pp. 925–931, April 1984.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1991

Authors and Affiliations

  • Donald L. Snyder
    • 1
  • Michael I. Miller
    • 1
  1. 1.Electronic Systems and Signals Research Laboratory, Department of Electrical EngineeringWashington UniversitySt. LouisUSA

Personalised recommendations