Skip to main content

Growth Factors as Local Regulators of Normal and Malignant Human Mammary Epithelium

  • Conference paper
Book cover Growth Factors in Reproduction

Part of the book series: Serono Symposia, USA ((SERONOSYMP))

Abstract

The mechanisms regulating growth of normal and malignant mammary epithelial cells are poorly understood. However, it is known that hormonal influences are critical in the normal development of the mammary gland. The ovaries (under pituitary control) promote glandular growth and differentiation, while the pituitary itself directly controls lactation. Proliferation of normal mammary epithelium seems to require both estrogen and progesterone, but cellular mitoses occur predominantly in the luteal phase of the menstrual cycle, when progesterone is in highest abundance. This is in striking contrast to the endometrium (which is where cellular mitoses occur predominantly in the follicular phase, when estrogen is “unopposed” by progesterone) (1). The pituitary and ovaries are also required for the development of breast cancer in women. The influences of the ovaries in breast cancer seem to be mediated by estrogen and progesterone (again under pituitary control) (2). In rodent models of carcinogen-induced breast cancer, it has been shown that both progesterone and estrogen seem to be required for tumor formation and for early growth of tumors (3–4). Presumably, the mechanism of interaction of estrogen and progesterone in normal and malignant breast is related to the requirement of estrogen to induce expression of progesterone receptor. However, other types of interactions have not been ruled out. Current controversy also surrounds both progestin and estrogen components of the oral contraceptive as risk factors in developing breast cancer (5). Estrogen and progesterone receptors have been localized to a luminal subpopulation of ductal and lobular epithelial cells in women and rodents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson TJ, Battersby S, King RJB, McPherson K, Going JJ. Oral contraceptive use influences resting breast proliferation. Human Pathol 1989; 20:1139–1144.

    Article  CAS  Google Scholar 

  2. Welsch CW. Host factors affecting the growth of carcinogen-induced rat mammary carcinomas: A review and tribute to Charles Brenton Huggins. Cancer Res 1985; 45:3415–3443.

    PubMed  CAS  Google Scholar 

  3. Jabara AG, Toyne PH, Harcourt AG. Effects of time and duration of progesterone administration on mammary tumors induced by DMBA in Sprague Dawley rats. Br J Cancer 1973; 27:63–71.

    Article  PubMed  CAS  Google Scholar 

  4. Robinson SP, Jordan VC. Reversal of the antitumor effects of tamoxifen by progesterone in the DMBA-induced rat mammary carcinoma model. Cancer Res 1987; 47:5386–5390.

    PubMed  CAS  Google Scholar 

  5. McCarty KS. Proliferative stimuli in the normal breast: Estrogens or progestins. Human Pathol 1989; 20:1137–1138.

    Article  Google Scholar 

  6. Daniel CW, Silberstein GA, Strickland P. Direct action of 17β estradiol in mouse mammary ducts analyzed by sustained release implants and steroid autoradiography. Cancer Res 1987; 47:6052–6057.

    PubMed  CAS  Google Scholar 

  7. Dulbecco R. Experimental studies in mammary development and cancer: Relevance to human cancer. Adv Oncol 1990; 5:3–6.

    Google Scholar 

  8. Paul D, Schmidt GH. Immortalization and malignant transformation of differentiated cells by oncogenes in vitro and in transgenic mice. Crit Rev Oncogen 1989; 1: 307–321.

    CAS  Google Scholar 

  9. Heldin CH, Westermark B. Growth factors: Mechanism of action and relations to oncogenes. Cell 1984; 37:9–20.

    Article  PubMed  CAS  Google Scholar 

  10. Goustin AS, Leof EB, Shipley GD, Moses L. Growth factors and cancer. Cancer Res 1986; 46:1015–1029.

    PubMed  CAS  Google Scholar 

  11. Sporn MB, Roberts AB. Peptide growth factors and inflammation, tissue repair, and cancer. J Clin Inv 1986; 78:329–332.

    Article  CAS  Google Scholar 

  12. Bates SE, Davidson NE, Valverius EM, et al. Expression of transforming growth factor alpha and its mRNA in human breast cancer: Its regulation by estrogen and its possible functional significance. Mol Endocrinol 1988; 2:543–555.

    Article  PubMed  CAS  Google Scholar 

  13. Perroteau I, Salomon D, DeBortoli M, et al. Immunological detection and quantitation of alpha transforming growth factors in human breast carcinoma cells. Breast Cancer Res Treat 1986; 7:201–210.

    Article  PubMed  CAS  Google Scholar 

  14. King RJB, Wang DY, Daley RJ, Darbre PD. Approaches to studying the role of growth factors in the progression of breast tumors from the steroid sensitive to insensitive state. J Steroid Biochem 1989; 34:133–138.

    Article  PubMed  CAS  Google Scholar 

  15. Knabbe C, Wakefield L, Flanders K, et al. Evidence that TGF beta is a hormonally regulated negative growth factor in human breast cancer. Cell 1987; 48:417–428.

    Article  PubMed  CAS  Google Scholar 

  16. Bates SE, McManaway ME, Lippman ME, Dickson RB. Characterization of estrogen responsive transforming activity in human breast cancer cell lines. Cancer Res 1986; 46:1707–1713.

    PubMed  Google Scholar 

  17. Artega CL, Tandon AK, Von Hoff DD, Osborne CK. Transforming growth factor β: Potential autocrine growth inhibitor of estrogen receptor-negative human breast cancer cells. Cancer Res 1988; 48:3898.

    Google Scholar 

  18. Dickson RB, Lippman ME. Control of human breast cancer by estrogen, growth factors, and oncogenes. In: Lippman ME, Dickson RB, eds. Breast cancer: Cellular and molecular biology. Boston: Kluwer Academic, 1988:119–166.

    Chapter  Google Scholar 

  19. Salomon DS, Kidwell WR. Tumor associated growth factors in malignant rodent and human mammary epithelial cells. In: Lippman ME, Dickson RB, eds. Breast cancer: Cellular and molecular biology. Boston: Kluwer Academic, 1988:363–390.

    Chapter  Google Scholar 

  20. Todaro GJ, Marquardt H, Twardzik DR, Reynolds FH, Stephenson JR. Transforming growth factors produced by viral-transformed and human tumor cells. In: Weinstein IB, Vogel HJ, eds. Genes and proteins in oncogenesis. New York: Academic Press, 1983.

    Google Scholar 

  21. Massague J. Epidermal growth factor-like transforming growth factor. J Biol Chem 1983; 258:13606–13613.

    PubMed  CAS  Google Scholar 

  22. Cheifetz S, Bassols A, Stanley K, Ohta M, Greenberger J, Massague J. Heterodimeric transforming growth factor β. J Biol Chem 1988; 263:10783.

    PubMed  CAS  Google Scholar 

  23. Stromberg K, Hudgins R, Orth DN. Urinary TGFs in neoplasia: Immunoreactive TGF-α in the urine of patients with disseminated breast carcinoma. Biochem Biophys Res Comm 1987; 144:1059.

    Article  PubMed  CAS  Google Scholar 

  24. Artega CL, Hanauske AR, Clark GM, et al. Immunoreactive alpha transforming growth factor (IrαTGF) activity in effusions from cancer patients: A marker of tumor burden and patient prognosis. Cancer Res 1988; 48:5023.

    Google Scholar 

  25. Sairenji M, Suzuki K, Murakami K, Motohashi H, Okamoto T, Umeda M. Transforming growth factor activity in pleural and peritoneal effusions from cancer and non-cancer patients. Jpn J Cancer Res (Gann) 1987; 78:814.

    CAS  Google Scholar 

  26. Derynck R. Transforming growth factor a Cell 1988; 54:593–595.

    CAS  Google Scholar 

  27. Bano M, Kidwell WR, Lippman ME, Dickson RB. Characterization of MDGF-1 receptor in human mammary epithelial cell liver. J Biol Chem 1990; 265:1874–1880.

    PubMed  CAS  Google Scholar 

  28. Bano M, Salomon DS, Kidwell WR. Purification of mammary derived growth factor 1 (MDGF 1) from human milk and mammary tumors. J Biol Chem 1985; 260:5745–5752.

    PubMed  CAS  Google Scholar 

  29. Bano M, Lupu R, Kidwell WR, Lippman ME, Dickson RB. Characterization of MDGF1 and its receptor in human breast cancer cells. Proc Am Assoc Cancer Res Washington, D.C., 1990 (in press).

    Google Scholar 

  30. Coffey RJ, Derynck R, Wilcox JN, et al. Production and auto-induction of transforming growth factor-α in human keratinocytes. Nature 1987; 328:817–820.

    Article  PubMed  CAS  Google Scholar 

  31. Masui T, Wakefield LM, Lechner JF, La Veck MA, Sporn MB, Harris CC. Type β transforming growth factor is the primary differentiation-inducing serum factor for normal human bronchial epithelial cells. Proc Natl Acad Sci USA 1986; 83:2438–2442.

    Article  PubMed  CAS  Google Scholar 

  32. Stampfer MR, Bartley JC. Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo-a-pyrene. Proc Natl Acad Sci USA 1985; 82:2394–2398.

    Article  PubMed  CAS  Google Scholar 

  33. Hammond SL, Ham RG, Stampfer MR. Serum-free growth of human mammary epithelial cells: Rapid clonal growth in defined medium and extended serial passage with pituitary extract. Proc Natl Acad Sci USA 1984; 81:5435–5439.

    Article  PubMed  CAS  Google Scholar 

  34. Vonderhaar BK. Regulation of development of the normal mammary gland by hormones and growth factors. In: Lippman ME, Dickson RB, eds. Breast cancer: Cellular and molecular biology. Boston: Kluwer Academic, 1988:251–266.

    Chapter  Google Scholar 

  35. Oka T, Tsutsumi O, Kurachi H, Okamoto S. The role of epidermal growth factor in normal and neoplastic growth of mouse mammary epithelial cells. In: Lippman ME, Dickson RB, eds. Breast cancer: Cellular and molecular biology. Boston: Kluwer Academic, 1988:343–362.

    Chapter  Google Scholar 

  36. Stampfer MR. Isolation and growth of human mammary epithelial cells. J Tiss Cult Meth 1985; 9:107–115.

    Article  Google Scholar 

  37. Osborne CK, Hamilton B, Titus G, Livingston RB. Epidermal growth factor stimulation of human breast cancer cells in culture. Cancer Res; 40:2361-66.

    Google Scholar 

  38. Davidson NE, Gelmann EP, Lippman ME, Dickson RB. Epidermal growth factor receptor gene expression in estrogen receptor-positive and negative human breast cancer cell lines. Mol Endocrinol 1987; 1:216–223.

    Article  PubMed  CAS  Google Scholar 

  39. Salomon DS, Perroteau I, Kidwell WR, Tarn J, Derynck R. Loss of growth responsiveness to epidermal growth factor and enhanced production of alpha-transforming growth factors in ras-transformed mouse mammary epithelial cells. J Cell Physiol 1987; 130:397–409.

    Article  PubMed  CAS  Google Scholar 

  40. Kurachi H, Okamoto S, Oka T. Evidence for the involvement of the submandibular gland epidermal growth factor in mouse mammary tumorigenesis. Proc Natl Acad Sci USA 1985; 81:5940–5943.

    Article  Google Scholar 

  41. Dickson RB, McManaway ME, Lippman ME. Estrogen-induced factors of breast cancer cells partially replace estrogen to promote tumor growth. Science 1986; 232:1540–1543.

    Article  PubMed  CAS  Google Scholar 

  42. Shoyab M, Plowman GD, McDonald VL, Bradley JG, Todaro GJ. Structure and function of human amphiregulin: A member of the epidermal growth factor family. Science 1989; 243:1074–1076.

    Article  PubMed  CAS  Google Scholar 

  43. Shankar V, Ciardiello F, Kim N, et al. Transformation of normal mouse mammary epithelial cells following transfection with a human transforming growth factor alpha cDNA. Mol Carcinog 1989.

    Google Scholar 

  44. Rosenthal A, Lindquist PB, Bringman TS, Goeddel DV, Derynck R. Expression in rat fibroblasts of a human transforming growth factor-α cDNA results in transformation. Cell 1986; 46:301–309.

    Article  PubMed  CAS  Google Scholar 

  45. Watanabe S, Lazar E, Sporn MB. Transformation of normal rat kidney (NRK) cells by an infectious retrovirus carrying a synthetic rat type α transforming growth factor gene. Proc Natl Acad Sci USA 1987; 84:1258–1262.

    Article  PubMed  CAS  Google Scholar 

  46. Finzi E, Fleming T, Segatto O, et al. The human transforming growth factor type α coding sequence is not a direct-acting oncogene when overexpressed in NIH 3T3 cells. Proc Natl Acad Sci USA 1987; 84:3733–3737.

    Article  PubMed  CAS  Google Scholar 

  47. Stern DF, Hare DL, Cecchini MA, Weinberg RA. Construction of a novel oncogene based on synthetic sequences encoding epidermal growth factor. Science 1987; 235:321–324.

    Article  PubMed  CAS  Google Scholar 

  48. Ciardiello F, Kim N, Hynes N, et al. Induction of transforming growth factor α expression in mouse mammary epithelial cells after transformation with a point-mutated c-Ha-ras protooncogene. Mol Endocrinol 1988; 2:1202–1216.

    Article  PubMed  CAS  Google Scholar 

  49. Gregory H, Thomas CE, Willshire IR, et al. Epidermal and transforming growth factor a in patients with breast tumors. Br J Cancer 1989:605–609.

    Google Scholar 

  50. Travers MR, Barrett-Lee PJ, Berger U, et al. Growth factor expression in normal, benign, and malignant breast tissue. Br Med J 1988; 296:1621–1630.

    Article  CAS  Google Scholar 

  51. Macias A, Perez R, Hägerström T, Skoog L. Identification of transforming growth factor alpha in human primary breast carcinomas. Anticancer Res 1987; 7:1271–1280.

    PubMed  CAS  Google Scholar 

  52. Eckert K, Granetzny A, Fischer J, Nexo E, Grosse R. An Mr 43,000 epidermal growth-factor related protein purified from the urine of breast cancer patients. Cancer Res 1990; 50:642–647.

    PubMed  CAS  Google Scholar 

  53. Sporn MB, Todaro GJ. Autocrine secretion and malignant transformation of cells. N Eng J Med 1980; 303:878–880.

    Article  CAS  Google Scholar 

  54. Anzano MA, Roberts AB, De Larco JE, et al. Increased secretion of type β transforming growth factor accompanies viral transformation of cells. Mol Cell Biol 1985; 5:242–250.

    PubMed  CAS  Google Scholar 

  55. Anzano MA, Roberts AB, Smith JM, Sporn MB, DeLarco JE. Sarcoma growth factor from conditioned medium of virally transformed cells is composed of both type α and type β transforming growth factors. Proc Natl Acad Sci USA 1983; 80:6264–6268.

    Article  PubMed  CAS  Google Scholar 

  56. Dickson RB, Kasid A, Huff KK, et al. Activation of growth factor secretion in tumorigenic states of breast cancer induced by 17-β-estradiol or v-ras H oncogene. Proc Natl Acad Sci USA 1987; 84:837–841.

    Article  PubMed  CAS  Google Scholar 

  57. Kraus MH, Yuspa Y, Aaronson SA. A position 12-activated H-ras oncogene in all Hs578T mammary carcinosarcoma cells but not normal mammary cells of the same patient. Proc Natl Acad Sci USA 1984; 81:5384–5388.

    Article  PubMed  CAS  Google Scholar 

  58. Kozma SC, Bogaard ME, Buser K, et al. The human c-Kirsten ras gene is activated by a novel mutation in codon 13 in the breast carcinoma cell line MDA-MB 231. Nucleic Acids Res 1988; 15:5963–5971.

    Article  Google Scholar 

  59. Clair T, Miller WR, Cho-Chung YS. Prognostic significance of the expression of a ras protein with a molecular weight of 21,000 by human breast cancer. Cancer Res 1987; 47:5290.

    PubMed  CAS  Google Scholar 

  60. Horan-Hand P, Vilase V, Thor A, Ohuchi N, Schlom J. Quantitation of Harvey ras p21 enhanced expression in human breast and colon carcinomas. J Natl Cancer Inst 1987; 79:59–65.

    Google Scholar 

  61. Medina D. The preneoplastic state in mouse mammary tumorigenesis, Carcinogenesis 1988; 9:1113–1120.

    Article  PubMed  CAS  Google Scholar 

  62. Kelekar A, Cole MD. Immortalization by c-myc, H-ras, and Ela oncogenes induces differential cellular gene expression and growth factor responses. Mol Cell Biol 1987; 7:3899–3907.

    PubMed  CAS  Google Scholar 

  63. Leof EB, Proper JA, Moses HL. Modulation of transforming growth factor type β action by activated ras and c-myc. Mol Cell Biol 1987; 7:2649–2652.

    PubMed  CAS  Google Scholar 

  64. Stern DF, Roberts AB, Roche NS, Sporn MB, Weinberg RA. Differential responsiveness of myc- and ras-transfected cells to growth factors: Selective stimulation of myc-transfected cells by epidermal growth factor. Mol Cell Biol 1986; 6:870–877.

    PubMed  CAS  Google Scholar 

  65. Escot C, Theillet C, Lidereau R, et al. Genetic alteration of the c-myc proto-oncogene in human primary breast carcinomas. Proc Natl Acad Sci USA 1986; 83:4834–4838.

    Article  PubMed  CAS  Google Scholar 

  66. Schoenberger CA, Andres AC, Groner B, van der Valk M, LeMeur M, Gerlinger P. Targeted c-myc gene expression in mammary glands of transgenic mice induces mammary tumors with constitutive mild protein gene transcription. EMBO J 1988; 7:169–175.

    Google Scholar 

  67. Valverius EM, Ciardiello F, Rim N, et al. Basic fibroblast growth factor (bFGF) or cocultivation with mammary fibroblasts can induce a transformed phenotype in vitro in immortalized SV40-T expressing human mammary epithelial cells. Proc 5th annu meet Oncogenes, Frederick, MD, 1989:230.

    Google Scholar 

  68. Sainsbury JR, Farndon JR, Needham GK, Malcolm AJ, Harris AL. Epidermal-growth-factor receptor status as predictor of early recurrence of and death from breast cancer. Lancet 1987; i:1398–1402.

    Google Scholar 

  69. Perez R, Pascual M, Macias A, Lage A. Epidermal growth factor receptors in human breast cancer. Breast Cancer Res Treat 1984; 4:189–193.

    Article  PubMed  CAS  Google Scholar 

  70. Slamon DJ, Godulphin W, Jones LA, et al. Studies of the HER-2/neu protooncogene in human breast and ovarian cancer. Science 1989; 244:621–624.

    Article  Google Scholar 

  71. Paik S, Hazan R, Fisher ER, et al. Pathologic findings from the National Surgical Adjuvant breast and bowel project: Prognostic significance of erbB2 protein overexpression in primary breast cancer. J Clin Oncol 1990; 8:103–112.

    PubMed  CAS  Google Scholar 

  72. Spitzer E, Grosse R, Kunde D, Schmidt HE. Growth of mammary epithelial cells in breast-cancer biopsies correlates with EGF binding. Int J Cancer 1987; 39:279–282.

    Article  PubMed  CAS  Google Scholar 

  73. Ciardiello F, Hynes N, Kim N, Valverius EM, Lippman ME, Salomon DS. Transformation of mouse mammary epithelial cells with the Ha-ras but not the neu oncogene results in a gene dosage-dependant increase in transforming growth factor α production. FEBS Lett 1979; 250:474–478.

    Article  Google Scholar 

  74. Velu TJ, Beguinot L, Vass WC, et al. Epidermal growth factor-dependent transformation by a human EGF receptor proto-oncogene. Science 1987; 238:1408–1450.

    Article  PubMed  CAS  Google Scholar 

  75. Di Fiore PP, Pierce JH, Fleming TP, et al. Overexpression of the human EGF receptor confers an EGF-dependent transformed phenotype to NIH 3T3 cells. Cell 1987; 51:1063–1070.

    Article  PubMed  Google Scholar 

  76. Riedel H, Massoglia S, Schlessinger J, Ullrich A. Ligand activation of overexpressed epidermal growth factor receptors transforms NIH 3T3 mouse fibroblasts. Proc Natl Acad Sci USA 1988; 85:1477–1482.

    Article  PubMed  CAS  Google Scholar 

  77. Hudziak RM, Schlessinger J, Ullrich A. Increased expression of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH 3T3 cells. Proc Natl Acad Sci USA 1987; 84:7159–7162.

    Article  PubMed  CAS  Google Scholar 

  78. Di Fiore PP, Pierce JH, Kraus MH, Segatto O, King CR, Aaronson SA. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science 1987b; 237:178–182.

    Article  PubMed  Google Scholar 

  79. Kraus MH, Issing W, Miki T, Popescu NC, Aaronson SA. Isolation and characterization of ERBB3, a third member of the ERB/epidermal growth factor receptor family: Evidence for overexpression in a subset of human mammary tumors. Proc Natl Acad Sci USA 1989; 86:9193–9197.

    Article  PubMed  CAS  Google Scholar 

  80. Ali I, Lidereau R, Thillet E, Callahan R. Reduction to homozygosity of genes on chromosome 11 in human breast neoplasia. Science 1987; 238:185–187.

    Article  PubMed  CAS  Google Scholar 

  81. Lundberg C, Skoog L, Cavence W, Nordenskjold M. Loss of heterozygosity in human ductal breast tumors indicates a recessive mutation on chromosome 13. Proc Natl Acad Sci USA; 84:2372–2376.

    Google Scholar 

  82. Steeg PS, Bevilacqua G, Kopper L, et al. Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst 1988; 80:200–204.

    Article  PubMed  CAS  Google Scholar 

  83. Lee EY, To H, Shew JY, Sculley P, Lee WH. Inactivation of the retinoblastoma susceptibility in human breast cancers. Science 1988; 241:218–221.

    Article  PubMed  CAS  Google Scholar 

  84. Moses HL, Tucker RF, Leof EB, Coffey RJ, Halper J, Shipley GD. Type-β transforming growth factor is a growth stimulator and a growth inhibitor. In: Feramisco J, Ozanne B, Stiles C, eds. Cancer cells; vol 3. Cold Spring Harbor, NY: Cold Spring Harbor Lab., 1985.

    Google Scholar 

  85. Roberts AB, Anzano MA, Wakefield LM, Roche NS, Stern DF, Sporn MB. Type β transforming growth factor: a bifunctional regulator of cellular growth. Proc Natl Acad Sci USA 1985; 82:119–124.

    Article  PubMed  CAS  Google Scholar 

  86. Seyedin SM, Thompson AY, Bentz H, et al. Cartilage-inducing factor A. J Biol Chem 1986; 261:5693–5699.

    PubMed  CAS  Google Scholar 

  87. Leof EB, Proper JA, Shipley GD, Di Corleto PE, Moses HL. Induction of c-sis mRNA and activity similar to platelet-derived growth factor by transforming growth factor-beta: A proposed model for indirect mitogenesis involving autocrine activity. Proc Natl Acad Sci USA 1986; 83:2453–2457.

    Article  PubMed  CAS  Google Scholar 

  88. Bronzert DA, Bates SE, Sheridan JA, et al. TGF beta induces PDGF mRNA and PDGF secretion while inhibiting growth in normal human mammary epithelial cells. Mol Endocrinol 1990 (in press).

    Google Scholar 

  89. Takehara K, LeRoy EC, Grotendorst GR. TGF-β inhibition of endothelial cell proliferation: Alteration of EGF binding and EGF-induced growth-regulatory (competence) gene expression. Cell 1987; 49:415–422.

    Article  PubMed  CAS  Google Scholar 

  90. Fernandez-Pol JA, Klos DJ, Hamilton PD, Talkad VD. Modulation of epidermal growth factor receptor gene expression by transforming growth factor-β in a human breast carcinoma cell line. Cancer Res 1987; 47:4260–4265.

    PubMed  CAS  Google Scholar 

  91. Valverius EM, Walker-Jones D, Bates SE, et al. Production of and responsiveness to transforming growth factor-β in normal and oncogene-transformed human mammary epithelial cells. Cancer Res 1989; 49:6269–6274.

    PubMed  CAS  Google Scholar 

  92. Assoian RK, Komoriya A, Meyers CA, Smith DM, Sporn MB. Transforming growth factor β in human platelets: Identification of a major storage site, purification and characterization. J Biol Chem 1983; 259:9756.

    Google Scholar 

  93. Silberstein GB, Daniel CW. Reversible inhibition of mammary gland growth by transforming growth factor-β. Science 1987; 237:2391–2395.

    Article  Google Scholar 

  94. Leof EB, Proper JA, Moses HL. Modulation of transforming growth factor type β action by activated ras and c-myc. Mol Cell Biol 1987; 7:2649–2652.

    PubMed  CAS  Google Scholar 

  95. Reddel RR, Ke Y, Kaighn ME, et al. Human bronchial epithelial cells neoplastically transformed by v-Ki-ras: Altered response to inducers of terminal squamous differentiation. Oncogene Res 1988.

    Google Scholar 

  96. Shipley GD, Pittelkow MR, Wille JJ Jr, Scott RE, Moses HL. Reversible inhibition of normal human prokeratinocyte proliferation by type β transforming growth factor-growth inhibitor in serum-free medium. Cancer Res 1986; 46:2068–2073.

    PubMed  CAS  Google Scholar 

  97. Kimchi A, Wang XF, Weinberg RA, Cheifetz S, Massague J. Absence of TGF-β receptors and growth inhibitory responses in retinoblastoma cells. Science 1988; 240:196–199.

    Article  PubMed  CAS  Google Scholar 

  98. Stampfer MR, Bartley JC. Human mammary epithelial cells in culture: Differentiation and transformation. In: Lippman ME, Dickson RB, eds. Breast cancer: Cellular and molecular biology. Boston: Kluwer Academic, 1988:1–24.

    Chapter  Google Scholar 

  99. Clark R, Stampfer MR, Milley R, et al. Transformation of human mammary epithelial cells by oncogenic retroviruses. Cancer Res 1988; 48:4689–4694.

    PubMed  CAS  Google Scholar 

  100. Valverius EM, Bates SE, Stampfer MR, et al. Transforming growth factor alpha production and EGF receptor expression in normal and oncogene transformed human mammary epithelial cells. Mol Endocrinal 1989; 3:203–214.

    Article  CAS  Google Scholar 

  101. Bates SE, Valverius EM, Ennis BW, et al. Expression of the transforming growth factor α/epidermal growth factor receptor pathway in normal human breast epithelial cells. Endocrinology 1990; 126:596–607.

    Article  PubMed  CAS  Google Scholar 

  102. Liscia DS, Merlo G, Ciardiello F, et al. Transforming growth factor-α messenger RNA localization in the developing adult rat and human mammary gland by in situ hybridization. Dev Biol 1990 (in press).

    Google Scholar 

  103. Linsley PS, Hargreaves WR, Twardzik DR, Todaro GJ. Detection of larger polypeptides structurally and functionally related to type I transforming growth factor. Proc Natl Acad Sci USA 1985; 82:356–360.

    Article  PubMed  CAS  Google Scholar 

  104. Ennis BW, Valverius E, Lippman ME, et al. Anti-EGF receptor antibodies inhibit the autocrine stimulated growth of MDA-MB-468 human breast cancer cells. Mol Endocrinol 1989; 3:1830–1838.

    Article  PubMed  CAS  Google Scholar 

  105. Zajchowski D, Band V, Pauzie N, Tager A, Stampfer M, Sager R. Expression of growth factors and oncogenes in normal and tumor-derived human mammary epithelial cells. Cancer Res 1988; 48:7041–7047.

    PubMed  CAS  Google Scholar 

  106. Stern DF, Roberts AB, Roche NS, Sporn MB, Weinberg RA. Differential responsiveness of myc- and ras-transfected cells to growth factors: Selective stimulation of myc-transfected cells by epidermal growth factor. Mol Cell Biol 1986; 6:870–894.

    PubMed  CAS  Google Scholar 

  107. Balk SD, Riley TM, Günther HS, Morisi A. Heparin-treated, v-myc-transformed chicken heart mesenchymal cells assume a normal morphology but are hypersensitive to epidermal growth factor (EGF) and brain fibroblast growth factor (bFGF); cells transformed by the v-Ha-ras oncogene are refractory to EGF and bFGF but are hypersensitive to insulin-like growth factors. Proc Natl Acad Sci USA 1985; 82:5781–5785.

    Article  PubMed  CAS  Google Scholar 

  108. Luttrell DK, Luttrell LM, Parsons SJ. Augmented mitogenic responsiveness to epidermal growth factor in murine fibroblasts that overexpress pp60c-src. Mol Cell Biol 1988; 8:497–501.

    PubMed  CAS  Google Scholar 

  109. Filmus J, Pollak MN, Cailleau R, Buick RN. MDA-468, a human breast cancer cell Une with a high number of epidermal growth factor (EGF) receptors, has an amplified EGF receptor gene and is growth inhibited by EGF. Biochem Biophys Res Commun 1985; 128:898–905.

    Article  PubMed  CAS  Google Scholar 

  110. Santon JB, Cronin MT, MacLeod CL, Mendelsohn J, Masui H, Gill GN. Effects of epidermal growth factor receptor concentration on tumorigenicity of A431 cells in nude mice. Cancer Res 1986; 46:4701–4705.

    PubMed  CAS  Google Scholar 

  111. Ramata T, Feramisco JR. Is the ras oncogene protein a component of the epidermal growth factor receptor system? In: Levine AJ, Vande Woude GF, Topp WC, Watson JD, eds. Cancer Cells 1/the transformed phenotype. Cold Spring Harbor, NY: Cold spring Harbor Lab., 1984.

    Google Scholar 

  112. Zugmaier G, Ennis BW, Deschauer B, et al. Transforming growth factors type β1 and β2 are equipotent growth inhibitors of human breast cancer cell lines. J Cell Physiol 1989; 141:353–361.

    Article  PubMed  CAS  Google Scholar 

  113. Houck, KA, Strom SC, Michalopoulos G. Resistance to the growth inhibitory effect of transforming growth factor beta is induced by transfection of an activated H-ras oncogene into rat liver epithelial cells [Abstract 254]. Proc Am Assn Cancer Res 1987; 28:64.

    Google Scholar 

  114. Walker-Jones D, Valverius EM, Stampfer MS, Lippman ME, Dickson RB. Transforming growth factor beta stimulates expression of epithelial membrane antigen in normal and oncogene-transformed human mammary epithelial cells. Cancer Res 1989; 49:6407–6411.

    PubMed  CAS  Google Scholar 

  115. Bronzert DA, Pantazis P, Antoniades HN, et al. Synthesis and secretion of PDGF-like growth factor by human breast cancer cell lines. Proc Natl Acad Sci USA 1987; 84:5763–5767.

    Article  PubMed  CAS  Google Scholar 

  116. Graycar JL, Miller DA, Arrick BA, Lyons RM, Moses HL, Derynck R. Human transforming growth factor β3: Recombinant expression, purification, and biological activities in comparison with transforming growth factors-βl and-β2. Mol Endocrinol 1989; 3:1977–1986.

    Article  PubMed  CAS  Google Scholar 

  117. Haslam SZ. Mammary fibroblast influence on normal mouse mammary epithelial responses to estrogen in vitro. Cancer Res 1986; 46:310–316.

    PubMed  CAS  Google Scholar 

  118. Cullen KJ, Hill S, Paik S, Smith HS, Lippman ME, Rosen N. Growth factor mRNA expression by human breast fibroblasts from benign and malignant lesions. Proc Am Assn Cancer Res, Washington, D.C., 1990.

    Google Scholar 

  119. Foekens JA, Portengen H, van Putten WLJ, et al. Prognostic value of receptors for insulin-like growth factor 1, somatostatin, and epidermal growth factor in breast cancer. Cancer Res 1989; 49:7002–7009.

    PubMed  CAS  Google Scholar 

  120. Peyrat JP, Bonmeterre J, Beuscart R, Djiane J, Demaille A. Insulin-like growth factor 1 receptors in human breast cancer and their relation to estradiol and progesterone receptors. Cancer Res 1988; 48:6429–6433.

    PubMed  CAS  Google Scholar 

  121. Yee D, Paik S, Rosen N, Lippman ME, Cullen KJ. Growth regulation of human breast cancer by insulin-like growth factors. In: Lippman ME, Dickson RB, eds. Breast cancer: Cellular and molecular biology; vol 2. Boston: Kluwer Academic, 1990 (in press).

    Google Scholar 

  122. Hilf R. The actions of insulin as a hormonal factor in breast cancer. Banbury report 8: Hormones and breast cancer. Cold Spring Harbor Lab., 1981:317–337.

    Google Scholar 

  123. Takahashi K, Suzuki K, Kawahara S, Ono T. Growth stimulation of human breast epithelial cells by basic fibroblast growth factor in serum free medium. Int J Cancer 1989; 43:870–874.

    Article  PubMed  CAS  Google Scholar 

  124. Levay-Young BK, Imagawa W, Wallace DR, Nandi S. Basic fibroblast growth factor stimulates the growth and inhibits casein accumulation in mouse mammary epithelial cells in vitro. Mol Cell Endocrinol 1989; 62:327–336.

    Article  PubMed  CAS  Google Scholar 

  125. Kern GF, Wellstein A, Flamm S, et al. Secretion of heparin binding growth factors by breast cancer cells and their role in promoting cancer cell growth. Proc 5th Nagoya Int Symposium on Cancer Treatment. Excerpta Medica International Congress Series, Amsterdam, 1990 (in press).

    Google Scholar 

  126. Chiquet-Ehrismann R, Kalla P, Pearson CA. Participation of tenascin and transforming growth factor β in reciprocal epithelial-mesenchymal interactions of MCF-7 cells and fibroblasts. Cancer Res 1989; 49:4322–4325.

    PubMed  CAS  Google Scholar 

  127. Ciardiello F, Kim N, Liscia DS, et al. mRNA expression of transforming growth factor alpha in human breast carcinomas and its activity in effusions of breast cancer patients. J Natl Cancer Inst 1989; 81:1165–1171.

    Article  PubMed  CAS  Google Scholar 

  128. Liu SC, Sanfilippo B, Perroteau I, Derynck R, Salomon DS, Kidwell WR. Expression of transforming growth factor α (TGFα) in differentiated rat mammary tumors: Estrogen induction of TGFα production. Mol Endocrinol 1987; 1:683–692.

    Article  PubMed  CAS  Google Scholar 

  129. Finzi E, Kilkenny A, Strickland JE, et al. TGFα stimulates growth of skin papillomas by autocrine and paracrine mechanisms but does not cause neoplastic progression. Mol Carcinog 1988; 1:7–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Dickson, R.B. (1991). Growth Factors as Local Regulators of Normal and Malignant Human Mammary Epithelium. In: Schomberg, D.W. (eds) Growth Factors in Reproduction. Serono Symposia, USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3162-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3162-2_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7819-1

  • Online ISBN: 978-1-4612-3162-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics