Skip to main content

Equilibrium-Based Modeling of Chemical Sorption on Soils and Soil Constituents

  • Chapter
Advances in Soil Science

Part of the book series: Advances in Soil Science ((SOIL,volume 16))

Abstract

Models are tools used to describe any phenomena in nature. One should not be misled to believe that if a given set of data can be accurately described or predicted, then the model used must therefore be correct. This conclusion, though it is often made, should be questioned as several different models often predict a given set of data equally well. A model that is always correct, however, eventually becomes recognized as a law of nature. The research emphasis, therefore, should be in testing models (or hypotheses) with various data sets from independent experiments. The more accurate the model, the broader the range of data it will predict.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson, A.W. 1982. Physical Chemistry of Surfaces, 4th ed. John Wiley & Sons, New York.

    Google Scholar 

  • Argersinger, W.J, Jr., A.W. Davidson, and O.D. Bonner. 1950. Thermodynamics and ion exchange phenomena. Trans. Kansas Acad. Sci. 53: 404–410.

    CAS  Google Scholar 

  • Ashida, M, M. Sasaki, H. Kan, T. Yasunaga, K. Hachiya, and T. Inoue. 1978. Kinetics of proton adsorption-desorption at Ti02-H20 interface by means of pressure-jump technique. J. Colloid Interface Sci. 67: 219–225.

    CAS  Google Scholar 

  • Astumian, R.D, M. Sasaki, T. Yasunaga, and Z.A. Schelly. 1981. Proton adsorption- desorption kinetics on iron oxides in aqueous suspensions, using the pressure-jump method. J. Phys. Chem. 85: 3832–3835.

    CAS  Google Scholar 

  • Beckett, P.H.T. 1964. Studies on soil potassium. I. Confirmation of the ratio law: Measurement of potassium potential. J. Soil Sci. 15: 1–8.

    CAS  Google Scholar 

  • Bell, A.T, and M.L. Hair. 1980. Vibrational spectroscopies for adsorbed species. ACS Symp. Ser. 137. Am. Chem. Soc, Washington, D.C.

    Google Scholar 

  • Belloni, J, M. Haissinsky, and H.N. Salama. 1959. On the adsorption of some fission products on various surfaces. J. Phys. Chem. 63: 881–887.

    CAS  Google Scholar 

  • Bernasconi, C.F. 1976. Relaxation Kinetics. Academic Press, NY.

    Google Scholar 

  • Bernasconi, C.F. (Ed.). 1986. Investigations of Rates and Mechanisms of Reactions, 4th ed. John Wiley & Sons, Inc. New York.

    Google Scholar 

  • Boedeker, C. 1859. Über das Verhältnis zwischen Masse und Wirkung beim Kontakt ammoniakalscher Flüssigkeiten mit Ackererde und mit kohlensaurem Kalk. Z. Acker-u. Pflanzenbau 7: 48–58.

    Google Scholar 

  • Boyd, G.E, J. Schubert, and A.W. Adamson. 1947. The exchange adsorption of ions from aqueous solutions by organic zeolites. I. Ion-exchange equilibria. J. Am. Chem. Soc. 69: 2818–2829.

    CAS  Google Scholar 

  • Boyd, S.A, S. Shaobai, J.F. Lee, and M.M. Mortland. 1988a. Pentachlorophenol sorption by organo-clays. Clays Clay Minerals 36: 125–130.

    CAS  Google Scholar 

  • Boyd, S.A, M.M. Mortland, and C.T. Chiou. 1988b. Sorption characteristics of organic compounds on hexadecyltrimethylammonium-smectite. Soil Sci. Soc. Am. J. 52: 652–657.

    CAS  Google Scholar 

  • Boyd, S.A, J.F. Lee, and M.M. Mortland. 1988c. Attenuating organic contaminant mobility by soil modification. Nature 333: 345–347.

    CAS  Google Scholar 

  • Brunauer, S. 1961. Solid surfaces and the solid-gas interface. In R.F. Gould (Ed.). Advances in Chemistry Series 33. Am. Chem. Soc, Washington, D.C, pp. 5–17.

    Google Scholar 

  • Brunauer, S, L.E. Copeland, and D.L. Kantro. 1967. The Langmuir and BET theories. In E.A. Flood (Ed.). The Solid-Gas Interface, Vol. 1. Marcel Dekker, NY, pp. 77–103.

    Google Scholar 

  • Butler, J.N. 1982. Carbon Dioxide Equilibria and their Applications. Addison-Wesley Publ. Co, Reading, MA.

    Google Scholar 

  • Chapman, D.L. 1913. A contribution to the theory of electrocapillarity. Phil. Magazine (series 6 ) 25: 475–481.

    Google Scholar 

  • Chiou, C.T., and T.D. Shoup. 1985. Soil sorption of organic vapors and effects of humidity on sorptive mechanism and capacity. Environ. Sci. Technol. 19: 1196–1200.

    CAS  Google Scholar 

  • Davis, J.A., and K.F. Hayes (Eds.). 1986. Geochemical Processes at Mineral Surfaces. ACS Symp. Ser. 323, Am. Chem. Soc., Washington, D.C., pp. 1–18.

    Google Scholar 

  • Elliott, H.A., and D.L. Sparks. 1981. Electrokinetic behavior of a paleudult profile in relation to mineralogical composition. Soil Sci. 132: 402–409.

    CAS  Google Scholar 

  • Freundlich, H. 1922. Colloid and Capillary Chemistry, 3rd. ed. Translated by H.S. Hatfield (1926), Methuen & Co., Ltd., London.

    Google Scholar 

  • Gaines, G.L., Jr., and H.C. Thomas. 1953. Adsorption studies on clay minerals. II. A formulation of the thermodynamics of exchange adsorption. J. Chem. Phys. 21: 714–718.

    CAS  Google Scholar 

  • Gans, R. 1913. Ueber die chemische oder physikalische Natur der kolloidalen wasser-haltigen Tonerdesilikate. N. Jahrb. Mineralogie, Geologie u. Palaontalogie 699–712, 728–741.

    Google Scholar 

  • Gapon, E.N. 1933. Theory of exchange adsorption in soils. J. Gen. Chem. (USSR)3: 144–152. (Abstract in Chem. Abs. 28:4149–4150,1934).

    CAS  Google Scholar 

  • Gardiner, W.C. 1969. Rates and Mechanisms of Chemical Reactions. Benjamin, NY.

    Google Scholar 

  • Gibbs, J.W. 1961. On the equilibrium of heterogeneous substances. In H.A. Bumstead and R.G. van Name (Eds.). The Scientific Papers of J. Willard Gibbs, Vol. I: Thermodynamics. Reprint, Dover Publ., Inc., New York, pp. 55–371.

    Google Scholar 

  • Goldberg, S. 1985. Chemical modeling of anion competition on goethite using the constant capacitance model. Soil Sci. Soc. Am. J. 49: 851–856.

    CAS  Google Scholar 

  • Gouy, G. 1910. Sur la constitution de la charge électrique à la surface d’un électolyte. Ann. Phys. (Paris) (series 4) 9: 457–468.

    Google Scholar 

  • Grebenshchikova, V.I., and Yu.P. Davydov. 1961a. Research on the state of Pu(IV) in dilute solutions of nitric acid. U.S. Atomic Energy Commission (Engl, transl. no. 4830), Radiokhimiya 3: 155–164.

    CAS  Google Scholar 

  • Grebenshchikova, V.I., and Yu.P. Davydov. 1961b. Adsorption of Pu(IV) on the surface of glass. Soviet Radiochemistry 3:177–184 (Engl, transl.), Radiokhimiya 3: 165–172.

    CAS  Google Scholar 

  • Greenland, D.J. 1971. Interactions between humic and fulvic acids and clays. Soil Sci. 111: 34–41.

    CAS  Google Scholar 

  • Guggenheim, E.A., and N.K. Adam. 1933. The thermodynamics of adsorption at the surface of solutions. Proc. R. Soc. Lond. [Math. & Phys.] 139A: 218–236.

    Google Scholar 

  • Hachiya, K., M. Ashida, M. Sasaki, H. Kan, T. Inoue, and T. Yasunaga. 1979. Study of the kinetics of adsorption-desorption of Pb2+ on a y-Al203 surface by means of relaxation techniques. J. Phys. Chem. 83: 1866–1871.

    CAS  Google Scholar 

  • Hachiya, K., M. Ashida, M. Sasaki, M. Karasuda, and T. Yasunaga. 1980. Study of the adsorption-desorption of IO3 on a Ti02 surface by means of relaxation techniques. J. Phys. Chem. 84: 2292–2296.

    CAS  Google Scholar 

  • Hachiya, K., M. Sasaki, Y. Saruta, N. Mikami, and T. Yasunaga. 1984a. Static and kinetic studies of adsorption-desorption of metal ions on a y-Al203 surface. 1. Static study of adsorption-desorption. J. Phys. Chem.88: 23–27

    CAS  Google Scholar 

  • Hachiya, K., M. Sasaki, T. Ikeda, N. Mikami, and T. Yasunaga. 1984b. Static and kinetic studies of adsorption-desorption of metal ions on a y-Al203 surface. 2. Kinetic study by means of pressure-jump technique. J. Phys. Chem.88: 27–31

    CAS  Google Scholar 

  • Harter, R.D, and D.E. Baker. 1977. Applications and misapplications of the Langmuir equation to soil adsorption phenomena. Soil Sci. Soc. Am. J. 41:1077–1080. See also letters to the editor SSSAJ42: 986–988 (1978)

    Google Scholar 

  • Hayes, K.F, and J.O. Leckie. 1986. Mechanism of lead ion adsorption at the goethite- water interface. InJ.A. Davis and K.F. Hayes (Eds.). Geochemical Processes at Mineral Surfaces. ACS Symp. Ser. 323, Am. Chem. Soc, Washington, D.C, pp. 114–141.

    Google Scholar 

  • Hayes, K.F, A.L. Roe, G.E. Brown, Jr., K.O. Hodgson, J.O. Leckie, and G.A. Parks. 1987. In situ X-ray adsorption study of surface complexes: Selenium oxyanions on a-αFeOOH. Science238: 783–786

    PubMed  CAS  Google Scholar 

  • Helmholtz, H. 1879. Studien über elektrische Grenzschichten. Ann. Physik u. Chemie(Leipzig) 7: 337–382

    Google Scholar 

  • Henry, D.C. 1922. A kinetic theory of adsorption. Phil. Mag. (series 6) 44: 689–705

    Google Scholar 

  • Hiemenz, P.C. 1977. Principles of Colloid and Surface Chemistry. Marcel Dekker, New York

    Google Scholar 

  • Hingston, F.J, R.J. Atkinson, A.M. Posner, and J.P. Quirk. 1967. Specific adsorption of anions. Nature215: 1459–1461

    CAS  Google Scholar 

  • Ho, C.H, and N.H. Miller. 1985. Effect of humic acid on uranium uptake by hematite particles. J. Colloid Interface Sci.106: 281–288

    CAS  Google Scholar 

  • Holford, I.C.R, R.W.M. Wedderburn, and G.E.G. Mattingly. 1974. A Langmuir two-surface equation as a model for phosphate adsorption by soils. J. Soil Sci.25: 242–255

    Google Scholar 

  • Holford, I.C.R, and G.E.G. Mattingly. 1975. The high- and low-energy phosphate adsorbing surfaces in calcareous soils. J. Soil Sci.26: 407–417

    CAS  Google Scholar 

  • Huang, C.P. 1981. The surface acidity of hydrous solids. InM.A. Anderson and A.J. Rubin (Eds.). Adsorption of Inorganics at Solid-Liquid Interfaces. Ann Arbor Sci. Publ, Ann Arbor, MI, pp. 183–217

    Google Scholar 

  • Huang, C.P, and E.H. Smith. 1981. Removal of Cd(II) from plating waste water by an activated carbon process. InW.J. Cooper (Ed.). Chemistry in Water Reuse, Vol. 2. Ann Arbor Science, Ann Arbor, MI, pp. 355–400

    Google Scholar 

  • Ikeda, T, M. Sasaki, and T. Yasunaga. 1982a. Kinetics of the hydrolysis of hydroxyl groups on zeolite surfaces using the pressure-jump relaxation method. J. Phys. Chem.86: 1678–1680

    CAS  Google Scholar 

  • Ikeda, T, M. Sasaki, K. Hachiya, R.D. Astumian, T. Yasunaga, and Z.A. Schelly. 1982b. Adsorption-desorption kinetics of acetic acid on silica-alumina particles in aqueous suspensions, using the pressure-jump relaxation method. J. Phys. Chem..86: 3861–3866

    CAS  Google Scholar 

  • Ikeda, T, M. Sasaki, and T. Yasunaga. 1984. Kinetic studies of ion exchange of the ammonium ion for H+ in zeolite H-ZSM-5 by the chemical relaxation method. J. Colloid Interface Sci.98: 192–195.

    CAS  Google Scholar 

  • James, R.O. 1981. Surface ionization and complexation at the colloid/aqueous electrolyte interface. InM.A. Anderson and A.J. Rubin (Eds.). Adsorption of Inorganics at Solid-Liquid Interfaces. Ann Arbor Sci. Publ, Ann Arbor, MI. pp. 219–261.

    Google Scholar 

  • James, R.O, and T.W. Healy. 1972. Adsorption of hydrolyzable metal ions at the oxide-water interface: II. Charge reversal of Si02 and Ti02 colloids by adsorbed Co(II), La(III), and Th(IV) as model systems. J. Colloid Interface Sci.40: 53–64.

    CAS  Google Scholar 

  • Johnston, C.T, and G. Sposito. 1987. Disorder and early sorrow: Progress in the chemical speciation of soil surfaces. InL.L. Boersma et al. (Eds.). Future Developments in Soil Science Research. Soil Sci. Soc. Am. Madison, WI, pp. 89–99.

    Google Scholar 

  • Kauffman, G.B. 1972. Cato Maximilian Guldberg. InC.C. Gillispie (Ed.). Dictionary of Scientific Biography, Vol. V. Charles Scribner’s Sons, NY, pp. 586–587.

    Google Scholar 

  • Kauffman, G.B. 1976. Peter Waage. InC.C. Gillispie (Ed.). Dictionary of Scientific Biography, Vol. XIV. Charles Scribner’s Sons, NY, pp. 108–109.

    Google Scholar 

  • Kerr, H.W. 1928a. The nature of base exchange and soil acidity. J. Am. Soc. Agr.20: 309–335.

    CAS  Google Scholar 

  • Kerr, H.W. 1928b. The identification and composition of the soil alumino-silicate active in base exchange and soil acidity. Soil Sci. 26: 385–398.

    CAS  Google Scholar 

  • Kipling, J.J. 1965. Adsorption from Solutions of Non-Electrolytes. Academic Press, New York.

    Google Scholar 

  • Klotz, I.M. 1982. Number of receptor sites from Scatchard graphs: Facts and fantasies. Science217: 1247–1249.

    PubMed  CAS  Google Scholar 

  • Koopal, L.K., W.H. van Riemsdijk, and M.G. Roffey. 1987. Surface ionization and complexation models: A comparison of methods for determining model parameters. J. Colloid Interface Sci.118: 117–136.

    CAS  Google Scholar 

  • Krishnamoorthy, C., and R. Overstreet. 1949. Theory of ion-exchange relationships. Soil Sci. 68: 307–315.

    CAS  Google Scholar 

  • Kuo, J.F., and T.F. Yen. 1988. Some aspects in predicting the point of zero charge of a composite oxide system. J. Colloid Interface Sci.121: 220–225.

    CAS  Google Scholar 

  • Lagaly, G., R. Witter, and H. Sander. 1983. Water on hydrophobic surfaces. InR.H. Ottewill, C.H. Rochester, and A.L. Smith (Eds.). Adsorption from Solution. Academic Press, NY, pp. 65–77.

    Google Scholar 

  • Lane, J.E. 1983. Surface activity coefficients. InR.H. Ottewill, C.H. Rochester, and A.L. Smith (Eds.). Adsorption from Solution. Academic Press, NY, pp. 51–64.

    Google Scholar 

  • Langmuir, I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc.40: 1361–1403.

    CAS  Google Scholar 

  • Langmuir, 1. 1932. Vapor pressures, evaporation, condensation and adsorption. J. Am. Chem. Soc.54: 2798–2832.

    CAS  Google Scholar 

  • Langmuir, I. 1933. An extension of the phase rule for adsorption under equilibrium and non-equilibrium conditions. J. Chem. Phys.1: 3–12.

    CAS  Google Scholar 

  • Leenheer, J. A., and E.W.D. Huffman, Jr. 1979. Analytical method for dissolved-organic carbon fractionation. U.S. Geological Survey, Water-Resources Investigations79–4.

    Google Scholar 

  • Martin, R.R., and R.St.C. Smart. 1987. X-ray photoelectron studies of anion adsorption on goethite. Soil Sci. Soc. Am. J.51: 54–56.

    CAS  Google Scholar 

  • Matthews, B.C., and P.H.T. Beckett. 1962. A new procedure for studying the release and fixation of potassium ions in soil. J. Agric. Sci.58: 59–64.

    CAS  Google Scholar 

  • Mattson, S. 1931. The laws of soil colloidal behavior: V. Ion adsorption and exchange. Soil Sci. 31: 311–331.

    CAS  Google Scholar 

  • Mikami, N., M. Sasaki, K. Hachiya, R.D. Astumian, T. Ikeda, and T. Yasunaga. 1983a. Kinetics of the adsorption-desorption of phosphate on the y-Al203 surface using the pressure-jump technique. J. Phys. Chem.87: 1454–1458.

    CAS  Google Scholar 

  • Mikami, N., M. Sasaki, T. Kikuchi, and T. Yasunaga. 1983b. Kinetics of adsorption- desorption of chromate on y-Al203 surfaces using the pressure-jump technique. J. Phys. Chem.87: 5245–5248.

    CAS  Google Scholar 

  • Mortland, M.M. 1970. Clay-organic complexes and interactions. Adv. Agron. 22:75–117.

    CAS  Google Scholar 

  • Moss, P., and P.H.T. Beckett. 1971. Sources of error in the determination of soil potassium activity ratios by the Q/Iprocedure. J. Soil Sci.22: 514–536.

    CAS  Google Scholar 

  • Murali, V., and L.A.G. Aylmore. 1983a. Competitive adsorption during solute transport in soils: 1. Mathematical models. Soil Sci. 135: 143–150.

    CAS  Google Scholar 

  • Murali, V, and L.A.G. Aylmore. 1983b. Competitive adsorption during solute transport in soils: 3. A review of experimental evidence of competitive adsorption and an evaluation of simple competition models. Soil Sci. 136: 279–290.

    CAS  Google Scholar 

  • Nabzar, L, A. Carroy, and E. Pefferkorn. 1986. Formation and properties of the kaolinite-polyacrylamide complex in aqueous media. Soil Sci. 141: 113–119.

    CAS  Google Scholar 

  • Ogwada, R.A, and D.L. Sparks. 1986a. Use of mole or equivalent fractions in determining thermodynamic parameters for potassium exchange in soils. Soil Sci. 141: 268–273.

    CAS  Google Scholar 

  • Ogwada, R.A, and D.L. Sparks. 1986b. A critical evaluation on the use of kinetics for determining thermodynamics of ion exchange in soils. Soil Sci. Soc. Am. J.50: 300–305.

    CAS  Google Scholar 

  • Olsen, S.R, and F.S. Watanabe. 1957. A method to determine a phosphorus adsorption maximum of soils as measured by the Langmuir isotherm. Soil Sci. Soc. Am. Proc.21: 144–149.

    CAS  Google Scholar 

  • Parfitt, R.L, and R.St.C. Smart. 1978. The mechanism of sulfate adsorption on iron oxides. Soil Sci. Soc. Am. J.42: 48–50.

    CAS  Google Scholar 

  • Podoll, R.T, K.C. Irwin, and S. Brendlinger. 1987. Sorption of water-soluble oligomers on sediments. Environ. Sci. Technol.21: 562–568.

    PubMed  CAS  Google Scholar 

  • Posner, A.M., and J.W. Bowden. 1980. Adsorption isotherms: Should they be split? J. Soil Sci.31: 1–10.

    CAS  Google Scholar 

  • Schmuck, M.N, M.P. Nowlan, and K.M. Gooding. 1986. Effects of mobile phase and ligand arm on protein retention in hydrophobic interaction chromatography. J. Chromatogr.371: 55–62.

    CAS  Google Scholar 

  • Schofield, R.K. 1947. A ratio law governing the equilibrium of cations in the soil solution. Proc. 11th Int. Congr. Pure Appl. Chem.3: 257–261.

    CAS  Google Scholar 

  • Schulthess, C.P, and C.P. Huang. 1990. Adsorption of heavy metals by silicon and aluminum oxide surfaces on clay minerals. Soil Sci. Soc. Am. J.54: 679–688.

    Google Scholar 

  • Schulthess, C.P, and C.P. Huang. 1991. Humic and fulvic acid adsorption by silicon and aluminum oxide surfaces on clay minerals. Soil Sci. Soc. Am. J.54: 34–42.

    Google Scholar 

  • Schulthess, C.P, and J.F. McCarthy. 1990. Competitive adsorption of aqueous carbonic and acetic acids by an aluminum oxide. Soil Sci. Soc. Am. J.54: 688–694.

    Google Scholar 

  • Schulthess, C.P, and D.L. Sparks. 1986. Backtitration technique for proton isotherm modeling of oxide surfaces. Soil Sci. Soc. Am. J.50: 1406–1411.

    CAS  Google Scholar 

  • Schulthess, C.P, and D.L. Sparks. 1987. Two-site model for aluminum oxide with mass balanced competitive pH + salt/salt dependent reactions. Soil Sci. Soc. Am. J.51: 1136–1144.

    CAS  Google Scholar 

  • Schulthess, C.P, and D.L. Sparks. 1988. A critical assessment of surface adsorption models. Soil Sci. Soc. Am. J.52: 92–97.

    CAS  Google Scholar 

  • Schulthess, C.P, and D.L. Sparks. 1989. Competitive ion exchange behavior on oxides. Soil Sci. Soc. Am. J.53: 366–373.

    CAS  Google Scholar 

  • Segel, I.H. 1975. Enzyme Kinetics. John Wiley & Sons, New York.

    Google Scholar 

  • Shuman, L.M. 1975. The effect of soil properties on zinc adsorption by soils. Soil Sci. Soc. Am. Proc.39: 454–458.

    CAS  Google Scholar 

  • Silbermann, W.E. 1961. Law of mass action. InJ. Thewlis (Ed.). Encyclopaedic Dictionary of Physics, Vol. 4. Pergamon Press, NY, pp. 505–506.

    Google Scholar 

  • Sparks, D.L. 1984. Ion activities: An historical and theoretical overview. Soil Sci. Soc. Am. J.48: 514–518.

    CAS  Google Scholar 

  • Sparks, D.L. 1985. Kinetics of ionic reactions in clay minerals and soils. Adv. Agron.38: 231–266.

    CAS  Google Scholar 

  • Sparks, D.L. 1987. Kinetics of soil chemical processes: Past progress and future needs. InL.L. Boersma et al. (Eds.). Future Developments in Soil Science Research. Soil Sci. Soc. Am., Madison, WI, pp. 61–73.

    Google Scholar 

  • Sparks, D.L. 1989a. Soil chemistry: Kinetics and mechanisms. McGraw-Hill Yearbook of Science and Engineering. McGraw-Hill, NY, pp. 362–365.

    Google Scholar 

  • Sparks, D.L. 1989b. Kinetics of Soil Chemical Processes. Academic Press, San Diego, CA.

    Google Scholar 

  • Sparks, D.L. 1989b. Kinetics of Soil Chemical Processes. Academic Press, San Diego, CA.

    Google Scholar 

  • Sposito, G. 1982. On the use of the Langmuir equation in the interpretation of “adsorption” phenomena: II. The “two-surface” Langmuir equation. Soil Sci. Soc. Am. J.46: 1147–1152.

    CAS  Google Scholar 

  • Sposito, G. 1984a. The future of an illusion: Ion activities in soil solutions. Soil Sci. Soc. Am. J.48: 531–536.

    CAS  Google Scholar 

  • Sposito, G. 1984b. The Surface Chemistry of Soils. Oxford Univ. Press, NY.

    Google Scholar 

  • Sposito, G. 1986. Distinguishing adsorption from surface precipitation. InJ.A. Davis and K.F. Hayes (Eds.). Geochemical Processes at Mineral Surfaces. ACS Symp. Ser. 323Washington, D.C., pp. 217–228.

    Google Scholar 

  • Stern, O. 1924. Zur Theorie der elektrolytischen Doppelschicht. Z. Elektrochemie30: 508–516.

    CAS  Google Scholar 

  • Stumm, W. 1986. Coordinative interactions between soil solids and water—an aquatic chemist’s point of view. Geoderma38: 19–30.

    CAS  Google Scholar 

  • Syers, J.K., M.G. Browman, G.W. Smillie, and R.B. Corey. 1973. Phosphate sorption by soils evaluated by the Langmuir adsorption equation. Soil Sci. Soc. Am. Proc.37: 358–363.

    CAS  Google Scholar 

  • Thomas, G.W. 1974. Chemical reactions controlling soil solution electrolyte concentration. InE.W. Carson (Ed.). The Plant Root and Its Environment. University Press of Virginia, Charlottesville, VA, pp. 483–506.

    Google Scholar 

  • Thomas, G.W. 1977. Historical developments in soil chemistry: Ion exchange. Soil Sci. Soc. Am. J.41: 230–238.

    CAS  Google Scholar 

  • Tipping, E. 1981a. The adsorption of aquatic humic substances by iron oxides. Geo-chem. Cosmochim. Acta45: 191–199.

    CAS  Google Scholar 

  • Tipping, E. 1981b. Adsorption by goethite (α-FeOOH) of humic substances from three different lakes. Chem. Geology33: 81–89.

    CAS  Google Scholar 

  • Trapnell, B.M.W. 1955. Chemisorption. Academic Press, New York.

    Google Scholar 

  • Vanselow, A.P. 1932. Equilibria of the base-exchange reactions of bentonites, permutites, soil colloids, and zeolites. Soil Sci. 33: 95–113.

    CAS  Google Scholar 

  • Veith, J. A., and G. Sposito. 1977. On the use of the Langmuir equation in the interpretation of “adsorption” phenomena. Soil Sci. Soc. Am. J.41: 697–702.

    CAS  Google Scholar 

  • Way, J.T. 1850. On the power of soils to absorb manure. J. R. Agric. Soc. Engl.11: 313–379.

    Google Scholar 

  • Way, J.T. 1852. On the power of soils to absorb manure. J.R. Agric. Soc. Engl.13: 123–143.

    Google Scholar 

  • Weiß, A. 1966. Modellversuche zur Hydrophobierung hydrophiler Grenzflächen an Schichtsilicaten. Kolloid Z.Z. Polymere211: 94–97.

    Google Scholar 

  • Westall, J., and H. Hohl. 1980. A comparison of electrostatic models for the oxide/solution interface. Adv. Colloid Interface Sci.12: 265–294.

    CAS  Google Scholar 

  • Westall, J.C. 1986. Reactions at the oxide-solution interface: Chemical and electrostatic models. InJ. A. Davis and K.F. Hayes (Eds.). Geochemical Processes at Mineral Surfaces. ACS Symp. Ser. 323. Am. Chem. Soc., Washington, D.C., pp. 54–78.

    Google Scholar 

  • Zachara, J.M, C.C. Ainsworth, C.E. Cowan, and B.L. Thomas. 1987. Sorption of binary mixtures of aromatic nitrogen heterocyclic compounds on subsurface materials. Environ. Sci. Technol.21: 397–402.

    CAS  Google Scholar 

  • Zhang, P.C, and D.L. Sparks. 1989. Kinetics and mechanisms of molybdate adsorption/desorption at the goethite/water interface using pressure-jump relaxation. Soil Sci. Soc. Am. J.53: 1028–1034.

    CAS  Google Scholar 

  • Zhang, P.C, and D.L. Sparks. 1990. Kinetics and mechanisms of sulfate adsorption/desorption on goethite using pressure-jump relaxation. Soil Sci. Soc. Am. J.54: 1266–1273.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Schulthess, C.P., Sparks, D.L. (1991). Equilibrium-Based Modeling of Chemical Sorption on Soils and Soil Constituents. In: Stewart, B.A. (eds) Advances in Soil Science. Advances in Soil Science, vol 16. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3144-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3144-8_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7812-2

  • Online ISBN: 978-1-4612-3144-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics