An overview of the DMol method, an implementation of the local density functional (LDF) approach for molecules, is presented. A brief review of the key features of the method, namely orbital expansions with accurate numerical basis sets (readily available for the whole periodic system), charge density and potential representation and automatic three dimensional integration is given. The now available analytical energy derivatives are discussed. Accurate calculated molecular geometries from the Hedin-Lundqvist local exchange correlation model for some transition metal compounds are compared to experiment and standard ab initio results. The geometry of planar Fe(II)porphine is investigated and compared to the assumed geometry for the molecules in the gas phase. The ground state is calculated to have 3E symmetry and the first excited state 3A2 g symmetry. Further calculations of low lying states of Fe(II)porphine show that both singlet and quintet spin states are higher in energy.


Density Functional Method Transition Metal Compound Spin Ground State High Spin Ground State Assumed Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Collman J.P., Hoard J.L., Kim N. Lang G., Reed C.A., 1975, J. Am. Chem. Soc. 97:2676.CrossRefGoogle Scholar
  2. Coppens P., Li L., 1984, J. Chem. Phys. 81:1983.CrossRefGoogle Scholar
  3. Edwards W.D., Weiner B., Zerner M.C., 1986, J. Am. Chem. Soc. 108:2196CrossRefGoogle Scholar
  4. Delley B., 1990a, J. Chem. Phys. 92:508CrossRefGoogle Scholar
  5. Delley B., 1990b, in preparationGoogle Scholar
  6. Gunnarsson O., Lundqvist B.I., 1976, Phys. Rev. B 13:4274CrossRefGoogle Scholar
  7. Hedin L., Lundqvist B.I., 1971, J. Phys. C 4:2064.CrossRefGoogle Scholar
  8. Hehre W.J., Radom L., Schleyer P.V.R., Pople J.A., 1986 Ab Initio Molecular Orbital Theory, Jown Willey & Sons, New York.Google Scholar
  9. Kohn W., Sham L.J., 1965, Phys. Rev. 140:A1133.CrossRefGoogle Scholar
  10. Levy M., 1979, Proc. Natl. Acad. Sci. (USA), 76:6062.CrossRefGoogle Scholar
  11. Obara S. and Kashiwagi H, 1982, J. Chem. Phys. 77:3155.CrossRefGoogle Scholar
  12. Parr R.G., Yang Weitao, 1989, Density-Functional Theory of Atoms and Molecules Oxford University Press, New York.Google Scholar
  13. Pulay P., 1969, Mol. Phys. 17:197CrossRefGoogle Scholar
  14. Rawlings D.C., Gouterman M., Davidson E.R., Feller D, 1985, Int. J. Quant. Chem. 18:773CrossRefGoogle Scholar
  15. Sontum S.F., Case D.A., Karplus M., 1983, J. Chem. Phys. 79:2881CrossRefGoogle Scholar
  16. Versluis L., Ziegler T., 1988, J. Chem. Phys. 88:322CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1991

Authors and Affiliations

  • B. Delley

There are no affiliations available

Personalised recommendations