Skip to main content

The Relationship Between Activities of Divalent Cation Oxides and the Solution of Sulfide in Silicate and Aluminosilicate Liquids

  • Chapter
Physical Chemistry of Magmas

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 9))

  • 307 Accesses

Abstract

At oxygen fugacities below those of approximately the nickel-nickel oxide buffer sulfur dissolves in silicate and aluminosilicate liquids by the gas-melt anion exchange reaction,

$$ {O^{2 - }}_{melt} + 0.5{S_{2gas}} = {S^{2 - }}_{melt} + 0.5{O_{2gas}} $$
(1)

(Fincham and Richardson, 1954; Richardson and Fincham, 1954; Katsura and Nagashima, 1974; Connolly and Haughton, 1972). The corresponding equilibrium constant, K 1 is given by

$$ {K_1} = \left( {{a_{{s^{2 - }}}}/{a_{{O^{2 - }}}}} \right){\left( {{f_{{O_{2/}}}}/{f_{{S_2}}}} \right)^{0.5}} = \left( {{\gamma_{{S^{2 - }}}}/{a_{{O^{2 - }}}}} \right)C_S^m $$
(2)

, where C mS (the molar sulfide capacity) is the sulfide content of a silicate melt that is normalized (Doyle, 1983) to account for the effect of the composition of the coexisting gas, a i and γ i (are activity and activity coefficient for corresponding component i in the melt, respectively; f i -fugacity of component t i in the equilibrium gas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham K.P. (1959) Thermodynamic aspects of some silicate melts. Ph.D. Dissertation, Univ. London. England.

    Google Scholar 

  • Abraham K.P. Davies M.W. Richardson F.D. (1960a) Activities of manganese oxide in silicate melts. Iron Steel Inst. J. 196: 8–87.

    Google Scholar 

  • Abraham K.P. Davies M.W. Richardson F.D. (1960b) Sulphide capacities in silicate melts. Part I. Iron Steel Inst. J. 196: 309–312.

    CAS  Google Scholar 

  • Belton G.R., Choudary U.V. Gaskell (1974) Thermodynamics of mixing of sodium-potassium silicates. In Physical Chemistry of Process Metallurgy: The Richardson Conference (ed. J.H.E. Jeffes and R.J. Tait). Instn. Mining Metall., London.

    Google Scholar 

  • Buchanan D.L. Nolan J. (1979) Solubility of sulfur and sulfide immiscibility in synthetic tholeiitic melts and their relevance to Bush veld-Complex rocks. Can. Mineral. 17:483–494.

    CAS  Google Scholar 

  • Carter P.T. Macfarlane T.G. (1957a) Thermodynamics of slag systems. Part I—thermo-dynamic properties of CaO–Al2O3 slags. Iron Steel Inst. J. 185: 54–62.

    Google Scholar 

  • Carter P.T. Macfarlane T.G. (1957b) Thermodynamics of slag systems. Part II—thermo-dynamic properties of CaO–SiO2 slags. Iron Steel Inst. J. 185: 62–66.

    Google Scholar 

  • Connolly J.W.D. Haughton D.R. (1972) The valence of sulfur in glass of basaltic composi-tion formed under conditions of low oxidation potential. Amer. Mineral. 57:1515–1517.

    CAS  Google Scholar 

  • Danckwerth P.A. Hess P.C. Rutherford M.J. (1979) The solubility of sulfur in high-TiO 2 mare basalts. Proc. Lunar Planet. Sci. Conf. 10: 517–530.

    Google Scholar 

  • Davies M.W. (1955) Thermodynamics of solutions of sulphides and oxides in silicate melts. Ph.D. Dissertation, Univ. London, England.

    Google Scholar 

  • Doyle CD. (1983) The solution of ferrous oxide in aluminosilicate melts and its effect on the solubility of sulphur. (U.M.I. Diss. Abs. 44/04, p. 1033–b). Ph.D. Dissertation, Univ. of Connecticut, Storrs.

    Google Scholar 

  • Doyle CD. (1988) Prediction of the activity of FeO in multicomponent magma from known values in the system [SiO2-KAlO2-CaAl2Si2O8]-FeO liquids. Geochim. Cosmochim. Acta 52: 1827–1834.

    Article  CAS  Google Scholar 

  • Doyle CD. Naldrett A.J. (1986) Ideal mixing of divalent cations in mafic magma and its effect on the solution of ferrous oxide. Geochim. Cosmochim. Acta 50: 435–443.

    Article  CAS  Google Scholar 

  • Doyle CD. Naldrett A.J. (1987) Ideal mixing of divalent cations in mafic magma. II. The solution of NiO and the partitioning of nickel between coexisting olivine and liquid. Geochim. Cosmochim. Acta 51: 213–219.

    Article  CAS  Google Scholar 

  • Fincham C.J.B. (1953) Equilibria of sulfur and oxygen between gases and liquid silicates. Ph.D. Dissertation, Univ. London, England.

    Google Scholar 

  • Fincham C.J.B. Richardson F.D. (1954) The behaviour of sulphur in silicate and aluminate melts. Roy. Soc. London Phil. Trans. A223: 40–62.

    Google Scholar 

  • Flood H. Grjotheim K. (1952) Thermodynamic calculation of slag equilibria. Iron Steel Inst. J. 171: 64–80.

    CAS  Google Scholar 

  • Flood H. Grjotheim K. (1953) Discussion on the thermodynamics of steelmaking. Iron Steel Inst. J. 173: 274–275.

    Google Scholar 

  • Flood H. Muan A. (1950) The influence of the cation composition on anion—equilibria in molten salt mixtures. Acta Chem. Scand. 4: 359–363.

    Article  CAS  Google Scholar 

  • Gaskell D.R. (1974) On the activity of MnO in MnO–Si02 melts. Metall. Trans. 5: 776–778.

    Article  CAS  Google Scholar 

  • Fraser D.G. Rammensee W. Hardwick A. (1985) Determination of the mixing properties of molten silicates by Knudsen Cell mass spectrometry-II. The systems (Na-K)Al-Si4O10 and (Na-K)AlSi 5O 12. Geochim. Cosmochim. Acta 49: 349–361.

    Article  CAS  Google Scholar 

  • Haughton D.R. (1970) The solubility of sulphur in basaltic melts. Ph.D. Dissertation, Queen’s Univ., Kingston, Ontario.

    Google Scholar 

  • Haughton D.R. Roeder P.L. Skinner B.J. (1974) Solubility of sulfur in mafic magmas. Econ. Geol. 69: 451–467.

    Article  CAS  Google Scholar 

  • Henderson G.S. Bancroft G.M. Fleet M.E. (1985) Raman spectra of gallium and ger-manium substituted silicate glasses: variations in intermediate range order. Amer. Mineral. 70: 946–960.

    CAS  Google Scholar 

  • Hervig R.L. Navrotsky A. (1984) Thermochemical study of glasses in the system NaAlSi3O8-KAlSi3O8-Si4O8 and the join Na1.6Al1.6Si2.4O8-K1.6Al1.6Si2.4O8. Geo-chim. Cosmochim. Acta 48: 513–522.

    Article  CAS  Google Scholar 

  • Hess P.C. (1971) Polymer model of silicate melts. Geochim. Cosmochim. Acta 35: 289–306.

    Article  CAS  Google Scholar 

  • Hess P.C. (1977) Structure of silicate melts. Can. Mineral. 15: 162–178.

    Google Scholar 

  • Hildebrand J.H. Prausnitz J.M. Scott R.L. (1970) Regular and related solutions. Van Nostrand Reinhold, N.Y.

    Google Scholar 

  • Kalyanram M.R. (1959) A study of activities of the constituents of molten slags. Ph.D. Dissertation, Univ. Glasgow, Scotland.

    Google Scholar 

  • Kalyanram M.R. Macfarlane T.G. Bell H.B. (1960) The activity of calcium oxide in slags in the systems CaO-MgO-SiO2, CaO-Al2O3-SiO2, and CaO-MgO-Al2O3–SiO2 at 1500°C. Iron Steel Inst. J. 195: 58–64.

    CAS  Google Scholar 

  • Katsura T. Nagashima S. (1974) Solubility of sulfur in some magmas at 1 atmosphere. Geochim. Cosmochim. Acta 38, 517–531

    Article  CAS  Google Scholar 

  • Masson C.R. (1965) An approach to the problem of ionic distribution in liquid silicate. Roy. Soc. London Proc. A287: 201–221.

    Article  Google Scholar 

  • Masson C.R. (1977) Anionic constitution of glass-forming melts. J. Noncryst. Solids 25:3–41.

    Article  Google Scholar 

  • McMillan P., Piriou B. Navrotsky A. (1982) A Raman spectroscopic study of glasses along the joins silica-calcium aluminate, silica-sodium aluminate, and silica-potassium aluminate. Geochim. Cosmochim. Acta 46: 2021–2037.

    Article  CAS  Google Scholar 

  • Mehta S.R. Richardson F.D. (1965) Activities of manganese oxide and mixing relationships in silicate and aluminate melts. Iron Steel Inst. J. 203: 524–528.

    CAS  Google Scholar 

  • Rammensee W. Fraser D.G. (1982) Determination of activities in silicate melts by Knudsen Cell mass spectrometry-I. The system NaAlSi3O8-KAlSi3O8. Geochim. Cosmochim. Acta 46: 2269–2278.

    Article  CAS  Google Scholar 

  • Richardson F.D. (1963) The properties and structure of phases and their relevance to process. In J.F. Elliot, ed., Steelmaking: the Chipman Conference. M.I.T. Press.

    Google Scholar 

  • Richardson F.D. Fincham C.J.B. (1954) Sulphur in silicate and aluminate slags. Iron Steel Inst. J. 178:4–15.

    CAS  Google Scholar 

  • Roy B.N. Navrotsky A. (1984) Thermochemistry of charge-coupled substitutions in silicate glasses: the systems M1/nn+AlO2-SO2 (M = Li, Na, K, Rb, Cs, Mg, Ca, Sr. Ba, Pb). Amer. Ceram. Soc. J. 67: 606–610.

    Article  CAS  Google Scholar 

  • Seifert F., Mysen B.O. Virgo D. (1982) Three-dimensional network structure of quenched melts (glass) in the systems SiO2-NaAlO2, SiO2-CaAl2O4 and SiO2-MgAl2O4. Amer. Mineral 67: 696–717.

    CAS  Google Scholar 

  • Sharma R.A. (1963) Activities in molten silicates. Ph.D. Dissertation, Univ. London, England.

    Google Scholar 

  • Sharma R.A. Richardson F.D. (1965) Activities of manganese oxide, sulphide capacities,and activity coefficients in aluminate and silicate melts. A.I.M.E. Trans. 233:1586–1592.

    CAS  Google Scholar 

  • Taylor M. Brown G.E. Jr. (1979a) Structure of mineral glasses—I. The feldspar glasses NaAlSi3O8, KAlSi3O8, CaAl2Si2O8. Geochim. Cosmochim. Acta 43: 61–75.

    Article  CAS  Google Scholar 

  • Taylor M. Brown G.E. Jr. (1979b) Structure of mineral glasses—II. The SiO2-NaAlSiO4 join. Geochim. Cosmochim. Acta 43: 1467–1473.

    Article  CAS  Google Scholar 

  • Toop G.W. Samis C.S. (1962a) Activities of ions in silicate melts. A.I.M.E. Trans. 224:878–887.

    CAS  Google Scholar 

  • Toop G.W. Samis C.S. (1962b) Some new ionic concepts of silicate slags. Can. Metal. Quart. 1: 129–152.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Doyle, C.D. (1991). The Relationship Between Activities of Divalent Cation Oxides and the Solution of Sulfide in Silicate and Aluminosilicate Liquids. In: Perchuk, L.L., Kushiro, I. (eds) Physical Chemistry of Magmas. Advances in Physical Geochemistry, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3128-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3128-8_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7806-1

  • Online ISBN: 978-1-4612-3128-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics