Skip to main content

Comparative Responses of Aquatic Ecosystems to Toxic Chemical Stress

  • Chapter
Comparative Analyses of Ecosystems

Abstract

I reviewed a variety of studies on the effects of toxic chemical stress on aquatic ecosystems to search for common patterns of response or sensitivity. Information was obtained from whole-ecosystem experiments, mesocosm experiments, and well-conducted studies of toxic discharges (such as accidental oil spills) into natural ecosystems. Whole-ecosystem experiments have provided the most powerful tool for determining the ecological effects of toxic substances in lakes, but there have been no experiments at this scale in marine ecosystems. A variety of whole-ecosystem and mesocosm experiments in both freshwaters and seawater have found that single-species tests conducted in the laboratory can grossly underestimate the potential for environmental damage from toxic substances.

My review suggests a similarity in response across different types of aquatic ecosystems to a variety of toxic substances. Toxic chemical stress can affect both the structure and function of aquatic ecosystems. However, structural changes are generally more predictable and may occur earlier or at lower levels of stress than do changes in ecosystem processes. I found several examples of structural changes occurring with no noticeable change in rates of ecosystem processes. However, I found no examples of ecosystem processes being affected without an accompanying change in structure. When ecosystem processes are affected by toxic chemical stress, rates can either increase or decrease. The most predictable structural change appears to be the loss of sensitive species. Changes in the structure of aquatic ecosystems can be of importance even when not accompanied by changes in ecosystem processes such as primary production. For instance, fish populations can be lost as a result of changes in food web structure.

Ecosystems dominated by opportunistic species appear more resistant to stress than those dominated by more specialized organisms. Ecosystems with greater diversity are probably less resistant to stress. The relative sensitivity of an ecosystem (or a mesocosm designed to mimic a natural ecosystem) needs to be considered when extrapolating results on the effects of toxic chemical stress, as well as in designing and interpreting experiments or monitoring programs in these systems. Identification of general patterns in the sensitivity and resistance of ecosystems to toxic chemical stress can aid in environmental management by helping to identify which ecosystems require special protection or particularly close monitoring.

I hypothesize that ecosystems with more open element cycles may be more resistant to toxic chemical stress than are more closed ecosystems. If true, then eutrophication has some effects in common with toxic chemical stress. As systems are stressed by eutrophication or by toxic substances, they become more resistant to further change. However, many desirable characteristics of the original ecosystems may already have been lost. If the hypothesis proves true, it should be useful in designing experiments to test the ecological effects of toxic substances. It may also prove extremely useful in siting decisions and other aspects of environmental management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addy, J.M., D. Levell, and J.P. Hartely. (1978). Biological monitoring of sediments in Ekofisk oilfield. In: Proceedings of the Conference Assessment of Ecological Impacts of Oil Spills. American Institute of Biological Sciences, Washington, D.C., pp. 519–539.

    Google Scholar 

  • Auerbach, S.I. (1981). Ecosystem response to stress: a review and critique. In: Stress Effects on Natural Ecosystems, G.W. Barrett and R. Rosenberg, eds. Wiley and Sons, New York, pp. 29–41.

    Google Scholar 

  • Bedinger, C.A., R.E. Childers, J.W. Cooper, K.T. Kimball, and A. Kwok. (1980). Central Gulf Platform Study. Vol. 1. Pollutant Fate and Effects Studies. Part 1. Background, Program Organization and Study Plan. Southwest Research Institute, Houston, Texas.

    Google Scholar 

  • Bender, M.E., D.J. Reish, and C.H. Ward. (1979). Independent appraisal. Reexamination of the offshore ecology investigation. Rice Univ. Stud. 65:35–118.

    Google Scholar 

  • Boesch, D.F. and R. Rosenberg. (1981). Response to stress in marine benthic communities. In: Stress Effects on Natural Ecosystems, G.W. Barrett and R. Rosenberg, eds. Wiley and Sons, New York, pp. 29–41.

    Google Scholar 

  • Cabioch, L., J.C. Dauvin, F. Gentil, C. Retiere, and V. Rivain. (1981). Perturbations induites dans la composition et le fonctionnement des peuplements benthiques sublittoraus sous l’effet des hydrocarbures de l’Amoco Cadiz. In: Amoco Cadiz, Fates and Effects of the Oil Spill, CNEXO, Paris, pp. 513–526.

    Google Scholar 

  • Carney, R.S. (1987). A review of study designs for the detection of long-term environmental effects of offshore petroleum activities. In: Long-Term Effects of Offshore Oil and Gas Development: An Assessment and Research Strategy, D.F. Boesch and N. Rabalais, eds. Elsevier, New York, pp. 651–696.

    Google Scholar 

  • Carpenter, S.R., J.F. Kitchell, and J.R. Hodgson. (1985). Cascading trophic interactions and lake productivity. BioScience 35:634–639.

    Article  Google Scholar 

  • Crossey, M.J. and T.W. LaPoint. (1988). A comparison of periphyton community structural and functional responses to heavy metals. Hydrobiologia 162:109–121.

    Article  CAS  Google Scholar 

  • Davies, J.M., I.E. Baird, L.C. Massie, S.J. Hay, and A.P. Ward. (1980). Some effects of oil-derived hydrocarbons in a pelagic food web from observations in an enclosed ecosystem and a consideration of their implications for monitoring. Rapp. P. V. Reun. Cons. Int. Explor. Mer. 179:201–211.

    CAS  Google Scholar 

  • DeAngelis, D.L. (1980). Energy flow, nutrient cycling, and ecosystem resilience. Ecology 61:764–771.

    Article  Google Scholar 

  • D’Elia, C.F. (1988). The cycling of essential elements in coral reefs. In: Concepts of Ecosystem Ecology, L.R. Pomeroy and J.J. Alberts, eds. Springer-Verlag, New York, pp. 195–230.

    Google Scholar 

  • Dillon, P.J. and F.H. Rigler. (1974). The phosphorus chlorophyll relationship in lakes. Limnol. Oceanogr. 19:767–773.

    Article  CAS  Google Scholar 

  • Dillon, P.J, N.D. Yan, W.A. Scheider, and N. Conroy. (1979). Acidic lakes in Ontario, Canada: characterization, extent and responses to base and nutrient addition. Ergeb. Limnol. 13:317–336.

    CAS  Google Scholar 

  • Eaton, J.A.J., R. Hermanutz, R. Kiefer, L. Mueller, R. Andersen, R. Erickson, B. Nordling, J. Rogers, and H. Pritchard. (1986). Biological effects of continuous and intermittent dosing of outdoor experimental streams with chloropyrifos. In: Aquatic Toxicology and Hazard Assessment: Eighth Symposium, R.C. Bahner and D.J. Hansen, eds. ASTM STP 891, American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  • Elmgren, R. and J.B. Frithsen. (1982). The use of experimental ecosystems for evaluating the environmental impacts of pollutants: a comparison of an oil spill in the Baltic Sea and two long-term, low-level oil addition experiments in mesocosms. In: Marine Mesocosms, G.D. Grice and M.R. Reeve, eds. Springer-Verlag, New York, pp. 153–165.

    Google Scholar 

  • Elmgren, R., G.A. Vargo, J.F. Grassle, J.P. Grassle, D.R. Heinle, G. Langois, and S.L. Vargo. (1980). Trophic interactions in experimental marine ecosystems perturbed by oil. In: Microcosms in Ecological Research, J.P. Giesy, ed. U.S. Dept. of Energy, Washington, D.C., pp. 779–800.

    Google Scholar 

  • Farrington, J.W. (1989). Bioaccumulation of hydrophobic organic pollutant compounds. In: Ecotoxicology: Problems and Approaches, S.A. Levin, M.A. Harwell, J.R. Kelly, and K.D. Kimball, eds. Springer-Ver lag, New York, pp. 279–308.

    Google Scholar 

  • Ford, J. (1989). The effects of chemical stress on aquatic species composition and community structure. In: Ecotoxicology: Problems and Approaches, S.A. Levin, M.A. Harwell, J.R. Kelly, and K.D. Kimball, eds. Springer-Verlag, New York, pp. 99–129.

    Google Scholar 

  • Galloway, J.N., G.E. Likens, and M.E. Hawley. (1984). Acid precipitation: natural versus anthropogenic components. Science 226:829–831.

    Article  PubMed  CAS  Google Scholar 

  • Gearing, J.N. (1989). The role of aquatic microcosms in ecosyxicologic research as illustrated by large marine systems. In: Ecotoxicology: Problems and Approaches, S.A. Levin, M.A. Harwell, J.R. Kelly, and K.D. Kimball, eds. Springer-Verlag, New York, pp. 411–448.

    Google Scholar 

  • Gentile, J.H., S.M. Gentile, N.G. Hairston, Jr., and B.K. Sullivan. (1982). The use of life-tables for evaluating the chronic toxicity of pollutants to Mysidopsis bahia. Hydrobiologia 93:179–187.

    Article  CAS  Google Scholar 

  • Goodman, D. (1975). The theory of diversity-stability relationships in ecology. Q. Rev. Biol. 50:237–266.

    Article  Google Scholar 

  • Gray, J.S. (1987). Oil pollution studies of the Solbergstrand mesocosms. Phil. Trans. R. Soc. Lond. B 316:641–654.

    Article  Google Scholar 

  • Gray, J.S. (1989). Effects of environmental stress on species rich assemblages. Biol. J. Linn. Soc. 37:19–32.

    Article  Google Scholar 

  • Greve, W. and T.R. Parsons. (1977). Photosynthesis and fish production: hypothetical effects of climatic change and pollution. Helgol. Wiss. Meeresunters. 30: 666–672.

    Article  Google Scholar 

  • Grice, G.D. and M.R. Reeve. (1982). Introduction and description of experimental ecosystems. In: Marine Mesocosms: Biological and Chemical Research in Experimental Ecosystems, G.R. Grice and M.R. Reeve, eds. Springer-Verlag, New York, pp. 1–9.

    Google Scholar 

  • GURC. (1974). Final Project Planning Council Concensus Report. Gulf Universities Research Consortium Report No. 138.

    Google Scholar 

  • Hall, R.J. and G.E. Likens. (1981). Chemical flux in an acid-stressed stream. Nature (London) 292: 329–331.

    Article  CAS  Google Scholar 

  • Hall, R.J., C.T. Driscoll, G.E. Likens, and J.M. Pratt. (1985). Physical chemical and biological consequences of episodic aluminum additions to a stream ecosystem. Limnol. Oceanogr. 30:212–220.

    Article  CAS  Google Scholar 

  • Hall, R.J., G.E. Likens, S.B. Fiance, and G.R. Hendrey. (1980). Experimental acidification af a stream in the Hubbard Brook Experimental Forest, New Hampshire. Ecology 61:976–989.

    Article  CAS  Google Scholar 

  • Hecky, P.E. and P. Kilham. (1988). Nutrient limitation of phytoplankton in fresh-water and marine environments: a review of recent evidence on the effects of enrichment. Limnol. Oceanogr. 33:796–822.

    Article  CAS  Google Scholar 

  • Hecky, R.E., R.W. Newbury, R.A. Bodaly, K. Patalas, and D.M. Rosenburg. (1984). Environmental impact prediction and assessment: the Southern Indian Lake experience. Can. J. Fish. Aquat. Sci. 41:730–732.

    Google Scholar 

  • Howarth, R.W. (1987). Potential impacts of petroleum on the biotic resources of Georges Bank. In: An Atlas of Georges Bank, R. Backus, ed. M.I.T. Press, Cambridge, Massachusetts.

    Google Scholar 

  • Howarth, R.W. (1988). Nutrient limitation of net primary production in marine ecosystems. Annu. Rev. Ecol Syst. 19:89–110.

    Article  Google Scholar 

  • Howarth, R.W. (1989). Determining the effects of oil pollution in marine ecosystems. In: Ecotoxicology: Problems and Approaches, S.A. Levin, M.A. Harwell, J.R. Kelly, and K.D. Kimball, eds. Springer-Verlag, New York, pp. 69–87.

    Google Scholar 

  • Howarth, R.W., R. Marino, and J.J. Cole (1988). Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 2. Biogeochemical controls. Limnol. Oceanogr. 33:688–701.

    Article  CAS  Google Scholar 

  • Hutchinson, G. E. (1959). Homage to Santa Rosalia, or why are there so many kinds of animals? Am. Nat. 93:145–159.

    Article  Google Scholar 

  • Jacobson, S.M. and D.B. Boylan. (1973). Effect of seawater soluble fraction of kerosene on chemotaxis in a marine snail, Nassarius obsoletus. Nature (London) 241:213–215.

    Article  CAS  Google Scholar 

  • Johansson, S. (1980). Impact of oil on the pelagic ecosystem. In: The Tsesis Oil Spill, J.J. Kineman, R. Elmgren, and S. Hansson, eds. NOAA, U.S. Dept. of Commerce, Washington, D.C., pp. 61–80.

    Google Scholar 

  • Kelly, C.A, J.W.M. Rudd, A. Furutani, and D.W. Schindler. (1984). Effects of lake acidification on rates of organic matter decomposition in sediments. Limnol. Oceanogr. 29:687–694.

    Article  CAS  Google Scholar 

  • Kettle, W.D. and F. DeNoyelles, Jr. (1986). Effects of cadmium stress on the plankton communities of experimental ponds. J. Freshwater Ecol. 3:433–444.

    Article  CAS  Google Scholar 

  • Kineman, J. and R.C. Clark, Jr. (1980). NOAA acute phase experiments on pelagic and surface oil. In: The Tsesis Oil Spill, J.J. Kineman, R. Elmgren, and S. Hansson, eds. NOAA, U.S. Dept. of Commerce, Washington, D.C., pp. 83–94.

    Google Scholar 

  • Kingston, P.F. (1987). Field effects of platform discharges on benthic macrofauna. Phil. Trans. R. Soc. Lond. B 316:545–565.

    Article  Google Scholar 

  • Lannergren, C. (1978). Net- and nanoplankton: effects of an oil spill in the North Sea. Bot. Mar. 21:353–356.

    Article  Google Scholar 

  • Larsen, D.P., F. deNoyelles, Jr., F. Stay, and T. Shiroyama. (1986). Comparisons of single-species, microcosm and experimental pond responses to atrazine exposure. Environ. Toxicol. Chem. 5:179–190.

    Article  CAS  Google Scholar 

  • Lee, R.F., and M. Takahashi. (1977). The fate and effect of petroleum in controlled ecosystem enclosuers. Rapp. P.-V. Reun. Cons. Int. Explor. Mer 171:150–156.

    CAS  Google Scholar 

  • Lee, R.F., M. Takahashi, J.R. Beers. (1978). Short term effects of oil on plankton in controlled ecosystems. In: Proceedings of Conference on Assessment of Ecological Impacts of Oil Spills. American Institute of Biological Sciences, Washington, D.C., pp. 635–650.

    Google Scholar 

  • Levine, S.N. (1989). Theoretical and methodological reasons for variability in the responses of aquatic ecosystem processed to chemical stress. In: Ecotoxicology: Problems and Approaches, S.A. Levin, M.A. Harwell, J.R. Kelly, and K.D. Kimball, eds. Springer-Verlag, New York, pp. 145–174.

    Google Scholar 

  • Likens, G.E. (1985). An experimental approach for the study of ecosystems. J. Ecol. 73:381–396.

    Article  Google Scholar 

  • Margalef, R. (1975). External factors and ecosystem stability. Schweiz. Z. Hydrol. 37:102–117.

    Article  Google Scholar 

  • Marino, R., R.W. Howarth, J. Shamess, and E. Prepas. (1990). Molybdenum and sulfate as controls on the abundance of nitrogen-fixing cyanobacteria in saline lakes in Alberta. Limnol. Oceanogr. 35:245–259.

    Article  CAS  Google Scholar 

  • McKnight, D. (1981). Chemical and biological processes controlling the response of a freshwater ecosystem to copper stress: a field study of the CuSO4 treatment of Mill Pond Reservoir, Burlington, Mass. Limnol. Oceanogr. 26:518–531.

    Article  CAS  Google Scholar 

  • Menzel, D.W. (1977). Summary of experimental results: controlled ecosystem pollution experiment. Bull. Mar. Sci. 27:142–145.

    Google Scholar 

  • Middleditch, B.S. (1982). Environmental Effects of Offshore Oil Production. The Buccaneer Gas and Oil Field Study. Plenum Press, New York.

    Google Scholar 

  • National Academy of Sciences. (1985). Oil in the Sea: Inputs, Fates, and Effects. Washington, D.C.

    Google Scholar 

  • Nixon, S.W., C. Oviatt, J. Frithsin, and B. Sullivan. (1986). Nutrients and the productivity of estuarine and coastal marine ecosystems. J. Limnol. Soc. S. Afr. 12:43–71.

    CAS  Google Scholar 

  • Nriagu, J.O. and J.M. Pacyna. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature (London) 333:134–139.

    Article  CAS  Google Scholar 

  • Økland, J. and K.A. Økland. (1986). The effects of acid deposition on benthic animals in lakes and streams. Experientia (Basel) 42:471–486.

    Article  Google Scholar 

  • Odum, E.P. (1969). The strategy of ecosystem development. Science 164:262–270.

    Article  PubMed  CAS  Google Scholar 

  • Odum, E.P. (1985). Trends expected in stressed ecosystems. BioScience 35:419–422.

    Article  Google Scholar 

  • O’Neill, R.V. and D.E. Reichle. (1980). Dimensions of ecosystem theory. In: Forests: Fresh Perspectives from Ecosystem Analysis, R.H. Waring, ed. Oregon State University Press, Corvallis, pp. 11–26.

    Google Scholar 

  • Oviatt, C.A., J. Frithsen, J. Gearing, and P. Gearing. (1982). Low chronic additions of No. 2 fuel oil: chemical behavior, biological impact and recovery in a simulated estuarine environment. Mar. Ecol. Prog. Ser. 9:121–136.

    Article  CAS  Google Scholar 

  • Patrick, R. (1949). A proposed biological measure of stream conditions based on a survey of the Conestoga Basin, Lancaster County, Pennsylvania. Proc. Acad. Nat. Sci. Phila. 101:277–341.

    Google Scholar 

  • Patrick, R. (1968). The structure of diatom communities in similar ecological conditions. Am. Nat. 102:173–183.

    Article  Google Scholar 

  • Patrick, R. (1972). Aquatic communities as indices of pollution. In: Indicators of Environmental Quality, W.A. Thomas, ed. Plenum Press, New York, pp. 93–100.

    Google Scholar 

  • Parsons, T.R., W.K.W. Li, and R. Waters. (1976). Some preliminary observations on the enhancement of phytoplankton growth by low levels of mineral hydrocarbons. Hydrobiology 51:85–89.

    Article  CAS  Google Scholar 

  • Pearson, T.H., and R. Rosenberg. (1978). Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Annu. Rev. 163:229–311.

    Google Scholar 

  • Perry, J.A. and N.H. Troelstrup. (1988). Whole ecosystem manipulation: a productive avenue for test system research? Environ. Toxicol. Chem. 7:941–951.

    Article  CAS  Google Scholar 

  • Pomeroy, L R. (1970). The strategy of mineral cycling. Annu. Rev. Ecol. Syst. 1: 171–190.

    Article  Google Scholar 

  • Rapport, D.J., H.A. Regier, and T.C. Hutchinson. (1985). Ecosystem behavior under stress. Am. Nat. 125:617–640.

    Article  Google Scholar 

  • Rosenberg, D.M., V.H. Resh, S.S. Balling, M.A. Barnaby, J.N. Collins, D.V. Durbin, T.S. Flynn, D.D. Hart, G.A. Lamberti, E.P. Elravy, J.R. Wood, T.E. Blank, D.M. Schultz, D.L. Marrin, and D.G. Price. (1981). Recent trends in environmental impact assessment. Can. J. Fish. Aquat. Sci. 38:591–624.

    Article  Google Scholar 

  • Rudd, J.W.M., C.A. Kelly, V. St. Louis, R.H. Hesslein, A. Furutani, and M. Holoka. (1986). Microbial consumption of nitric and sulfuric acids in acidified north temperate lakes. Limnol. Oceanogr. 31:1267–1280.

    Article  CAS  Google Scholar 

  • Sanders, H.L. (1968). Marine benthic diversity: a comparative study. Am. Nat. 102:243–282.

    Article  Google Scholar 

  • Sanders, H.L. and C. Jones. (1981). Oil, science, and public policy. In: Coast Alert: Scientists Speak Out, T.C. Jackson and D. Reische, eds. Friends of the Earth Publishers, San Francisco.

    Google Scholar 

  • Sanders, J.G. (1986). Direct and indirect effects of arsenic on the survival and fecundity of estuarine zooplankton. Can. J. Fish. Aquat. Sci. 43:694–699.

    Article  CAS  Google Scholar 

  • Sanders, J.G. and S.J. Cibik. (1988). Response of Chesapeake Bay phytoplankton communities to low levels of toxic substances. Mar. Pollut. Bull. 19:439–444.

    Article  CAS  Google Scholar 

  • Schindler, D.W. (1977). Evolution of phosphorus limitation in lakes. Science 195: 260–262.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, D.W. (1978). Factors regulating phytoplankton production and standing crop in the worlds freshwaters. Limnol. Oceanogr. 23:478–486.

    Article  Google Scholar 

  • Schindler, D.W. (1987). Determining ecosystem responses to anthropogenic stress. Can. J. Fish. Aquat. Sci. 44(Suppl. l):6–25.

    Article  CAS  Google Scholar 

  • Schindler, D.W., M.A. Turner, P. Stainton, and G. Linsey. (1986). Natural sources of acid nertralizing capacity in low alkalinity lakes of the Precambrian Shield. Science 235:844–847.

    Article  Google Scholar 

  • Schindler, D.W., K.H. Mills, D.F. Mailey, D.L. Findlay, J.A. Shearer, I.J. Davies, M.A. Turner, G.A. Linsey and D.R. Cruikshank. (1985). Long-term ecosystem stress: the effects of years of experimental acidification on a small lake. Science 228:1395–1401.

    Article  PubMed  CAS  Google Scholar 

  • Smith, S.V. (1984). Phosphorus versus nitrogen limitation in the marine environment. Limnol. Oceanogr. 29:1149–1160.

    Article  CAS  Google Scholar 

  • Smith, V.H. (1983). Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221:669–671.

    Article  PubMed  CAS  Google Scholar 

  • Steele, R.L. (1977). Effects of certain petroleum products on reproduction and growth of zygotes and juveniles stages of the alga Fucus edentatus de la Pyl (Phaeophyceae: Fucales). In: Fate and Effect of Petroleum Hydrocarbons in Marine Ecosystems and Organisms, D. Wolfe, ed. Pergamon, New York, pp. 115–128.

    Google Scholar 

  • Teal, J.M. and R.W. Howarth. (1984). Oil spill studies: a review of ecological effects. Environ. Manage. 8:27–44.

    Article  Google Scholar 

  • Thomas, W.H. and K.L.R. Seibert. (1977). Effects of copper on the dominance and the diversity of algae: controlled ecosystem pollution experiment. Bull. Mar. Sci. 27:23–33.

    CAS  Google Scholar 

  • Thomas, W.H., O. Holm-Hansen, D.L.R. Seibert, F. Azman, R. Hodson, and M. Takahashi. (1977). Effects of copper on phytoplankton standing crop and productivity: controlled ecosystem pollution experiment. Bull. Mar. Sci. 27:23–33.

    CAS  Google Scholar 

  • Trimbee, A.M. and E.E. Prepas. (1987). Evaluation of total phosphorus as a predictor of the relative biomass of blue-green algae with emphasis in Alberta lakes. Can. J. Fish. Aquat. Sci. 44:1337–1342.

    Article  CAS  Google Scholar 

  • U.S. Department of Interior. (1985). Final Environmental Statement, North Aleutian Basin Lease Sale #92. Minerals Management Service, Dept. of Interior, Anchorage, Alaska.

    Google Scholar 

  • Vandermeulen, J.H. and J.M. Capuzzo. (1983). Understanding sublethal pollutant effects in the marine environment. In: Ocean Waste Management Policy and Strategies, M.A. Champ and M. Trainor, eds. Center for Academic Publications, Melbourne, Florida.

    Google Scholar 

  • Vargo, G.A., M. Hutchins, and G. Almquist. (1982). The effect of low, chronic levels of no. 2 fuel oil on natural phytoplankton assemblages in microcosms: 1. Species composition and seasonal succession. Mar. Environ. Res. 6:245–264.

    Article  CAS  Google Scholar 

  • Walters, C. (1986). Adaptive Management of Renewable Resources. Macmillan, New York.

    Google Scholar 

  • Weinstein, D.A. and E. Birk. (1989). The effects of chemicals on the structure of terrestrial ecosystems: mechanisms and patterns of change. In: Ecotoxicology: Problems and Approaches, S.A. Levin, M.A. Harwell, J.R. Kelly, and K.D. Kimball, eds. Springer-Verlag, New York, pp. 181–203.

    Google Scholar 

  • Winfrey, M.R., E. Beck, P. Boehm, and D.M. Ward. (1982). Impact of crude oil on sulphate reduction and methane production in sediments impacted by the Amico Cadiz oil spill. Mar. Environ. Res. 7:175–194.

    Article  CAS  Google Scholar 

  • Woodwell, G.M. (1983). The blue planet: of wholes and parts and man. In: Disturbance and Ecosystems, H.A. Mooney and M. Godron, eds. Springer-Verlag, Berlin, pp. 2–10.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Howarth, R.W. (1991). Comparative Responses of Aquatic Ecosystems to Toxic Chemical Stress. In: Cole, J., Lovett, G., Findlay, S. (eds) Comparative Analyses of Ecosystems. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3122-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3122-6_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7804-7

  • Online ISBN: 978-1-4612-3122-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics