Skip to main content

A Cross-System Study of Phosphorus Release from Lake Sediments

  • Chapter
Comparative Analyses of Ecosystems

Abstract

Phosphorus plays an important role in the control of primary production in aquatic systems. Research during the past several decades has shown that a major loss of P from the surface photic waters of aquatic systems is by sinking of particles to the sediments. Not surprisingly, therefore, the extent to which sediments recycle P to overlying waters is critical in maintaining system productivity and controlling eutrophication of aquatic systems.

Research on P cycling in individual aquatic systems has indicated that dissolved oxygen content of waters is a major factor controlling P release from sediments. Although control by oxygen is widely accepted, this view is not substantiated by the large variation in P release among lakes. Looking among lakes it becomes clear that factors that are relatively invariant in single lakes (e.g., major ion concentrations) are critical in controlling sediment P release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, J.M. (1974). Nitrogen and phosphorus budgets and the role of sediments in six shallow Danish Lakes. Arch. Hydrobiol 74:528–550.

    Google Scholar 

  • Andersen, J.M. (1975). Influence of pH on release of phosphorus from lake sediments. Arch. Hydrobiol 76:411–419.

    CAS  Google Scholar 

  • Andersen, J.M. (1982). Effect of nitrate concentration in lake water on phosphate release from the sediment. Water Res. 16:1119–1126.

    Article  CAS  Google Scholar 

  • Baccini, P. (1985). Phosphate interaction at sediment-water interfaces. In: Chemical Processes in Lakes, W. Stumm, ed. Wiley, New York, pp. 189–205.

    Google Scholar 

  • Banoub, M.W. (1975). Experimental studies on material transactions between mud and water of the Gradensee (Bodensee). Verh. Int. Verein. Limnol. 14:1263–1271.

    Google Scholar 

  • Barrett, P.H. (1953). Relationship between alkalinity and adsorption of added phosphorus in fertilized trout lakes. Trans. Am. Fish. Soc. 82:78–90.

    Article  CAS  Google Scholar 

  • Bostrom, B., M. Jansson and G. Forsberg. (1982). Phosphorus release from lake sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 18:5–59.

    Google Scholar 

  • Bostrom, B., J.M. Andersen, S. Fleischer, and M. Jansson. (1988). Exchange of phosphorus across the sediment-water interface. Hydrobiologia 170:229–244.

    Article  Google Scholar 

  • Broberg, O. (1987). Phosphorus, Nitrogen and Carbon in the Acidified and Limed Lake Barsjon, SW Sweden. Ph.D. Dissertation, University of Uppsala, Sweden.

    Google Scholar 

  • Burgis, M.J. and P. Morris. (1987). The Natural History of Lakes. Cambridge University Press, Cambridge.

    Google Scholar 

  • Burns, N.M. and C. Ross. (1971). Nutrient relationships in a stratified eutrophic lake. Proc. 14th Conf. Great Lakes Res. Res. 1971:749–760.

    Google Scholar 

  • Callender, E. (1982). Benthic phosphorus regeneration in the Potomac River. Estuary Hydrobiol. 92:431–446.

    Google Scholar 

  • Callender, E. and D.E. Hammond. (1982). Nutrient exchange across the sediment-water interface in the Potomic River. Estuarine Coastal Shelf Sci. 15:395–413.

    Article  CAS  Google Scholar 

  • Caraco, N. (1986). Phosphorus, Iron, and Carbon Cycling in a Stratified Coastal Pond. Ph.D. Dissertation, Boston University, Massachusetts.

    Google Scholar 

  • Caraco, N.F. (1988). What is the mechanism behind the seasonal switch between N and P limitation in estuaries? Can. J. Fish. Aquat. Sci. 45:381–382.

    Google Scholar 

  • Caraco, N.F., J.J. Cole, and G.E. Likens. (1989). Evidence for sulfate-controiled P release from sediments of aquatic systems. Nature (London) 341:316–318.

    Article  CAS  Google Scholar 

  • Caraco, N.F., J.J. Cole, and G.E. Likens. (1990). A comparison of phosphorus immobilization in sediments of freshwater and marine systems. Biogeochemistry 9:277–290.

    Article  CAS  Google Scholar 

  • Caraco, N., A. Tamse, O. Boutros, and I. Valiela. (1987). Nutrient limitation of phytoplankton growth in brackish coastal ponds. Can. J. Fish. Aquat. Sci. 44: 473–476.

    Article  CAS  Google Scholar 

  • Caraco, N.F., J.J. Cole, G.E. Likens, M.D. Mattson, and S. Nolan. (1988). A very imbalanced nutrient budget for Mirror Lake, New Hampshire, USA. Verh. Int. Verein. Limnol. 23:170–175.

    Google Scholar 

  • Carlton, R.G. and R.G. Wetzel. (1988). Phosphorus flux from lake sediments: Effects of epipelic algal oxygen production. Limnol. Oceanogr. 33:562–570.

    Article  CAS  Google Scholar 

  • Carritt, D.E. and S. Goodgal. (1954). Sorption reactions and some ecological implications. Deep-Sea Res. 1:224–243.

    Article  CAS  Google Scholar 

  • Clasen, J. and H. Bernhardt. (1982). A bloom of the chrysophycea Synura uvella in the Wharbach Reservoir as indication for the release of phosphates from the sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 18:61–68.

    CAS  Google Scholar 

  • Cole, J.J., N.F. Caraco, and G.E. Likens. 1990. Atmospheric contribution to the phosphorus budget of Mirror Lake, NH Limnol. Oceanogr. 35:1230–1237.

    Article  CAS  Google Scholar 

  • Cooke, G.D., E.B. Welch, S.A. Peterson, and P.R. Newroth. (1986). Lake and Reservoir Restoration. Butter worth, Boston.

    Google Scholar 

  • Curtis, P.J. (1989). Effects of hydrogen ion and sulphate on the phosphorus cycle of a precambrian shield lake. Nature (London) 337:156–158.

    Article  CAS  Google Scholar 

  • Davies, R.B., D.L. Thurlow, and F.E. Brewster. (1975). Effects of burowing tubificid worms on the exchange of phosphorus between lake sediments and overlying water. Verh. Int. Verein. Limnol. 19:382–394.

    Google Scholar 

  • D’Elia, C.E., J.G. Sanders, and W.R. Boynton. (1986). Nutrient enrichment studies in a coastal plain estuary: phytoplankton growth in large-scale, continuous cultures. Can. J. Fish. Aquat. Sci. 43:397–406.

    Article  Google Scholar 

  • Einsele, W. (1936). Ueber die Beziehugen des Eisenkreislaufs zum Phophatkreislauf im eutrophen See. Arch. Hydrobiol. 29:664–686.

    CAS  Google Scholar 

  • Enell, M., S. Fleischer, and M. Jansson. (1989). Phosphorus in sediments — conference Report. Ambio 18:137–138.

    Google Scholar 

  • Fenchel, T. and T.H. Blackburn. (1979). Bacteria and Mineral Cycling. Academic Press, New York.

    Google Scholar 

  • Fisher, T.R., P.R. Carlson, and R.T. Barber. (1982). Sediment nutrient regeneration in three North Carolina estuaries. Estuarine Coastal Shelf Sci. 14:101–116.

    Article  CAS  Google Scholar 

  • Fox, L.E., S.L. Sager, and S.C. Wofsy. (1986). The chemical control of soluble phosphorus in the Amazon Estuary. Geochim. Cosmochim. Acta 50:783–794.

    Article  CAS  Google Scholar 

  • Gachter, R. (1988). Effects of oxygenation on phosphorus retention by lake sediments. In: Abstracts, 2nd International Workshop on Phosphorus in Sediments, Fiskebackskil, Sweden.

    Google Scholar 

  • Gachter, R. and D.M. Imboden. (1985). Lake restoration. In: Chemical Processes in Lakes, W. Stumm, ed. Wiley, New York, pp. 365–388.

    Google Scholar 

  • Gachter, R. and A. Mares. (1985). Does settling seston release soluble reactive phosphorus in the hypolimnion of lakes. Limnol. Oceanogr. 30:364–371.

    Article  Google Scholar 

  • Gallep, G.W. (1979). Chironomid influence on phosphorus release in sediment-water microcosms. Ecology 60:547–556.

    Article  Google Scholar 

  • Hasler, A.C. and W.G. Einsele. (1948). Fertilization for increasng productivity of natural inland waters. Trans. North Am. Wildlife Conf. 13:527–555.

    Google Scholar 

  • Hawke, D., P.D. Carpenter, and K.A. Hunter. (1989). Competitive adsorption of phosphate on geothite in marine electrolytes. Environ. Sci. Technol. 23:187–191.

    Article  CAS  Google Scholar 

  • Hayes, F.R. and J.E. Phillips. (1958). Lake water and sediments IV. Radiophosphorus equilibrium with mud, plants, and bacteria under oxidized and reduced conditions. Limnol. Oceanogr.. 3:459–475.

    Article  Google Scholar 

  • Hecky, R.E. and P. Kilham. (1988). Nutrient limitation of phytoplanton in freshwater and marine environments: a review of recent evidence of the effects of enrichment. Limnol. Oceanogr. 33:796–822.

    Article  CAS  Google Scholar 

  • Henderson-Sellers, B. and H.R. Markland. (1987). Decaying Lakes—The Origins and Control of Cultural Eutrophication. Wiley, New York.

    Google Scholar 

  • Hingston, F.G. (1981). A review of anion adsorption. In: Inorganics at Solid-Liquid Interfaces, M.A. Anderson and A.J. Robin, eds. Ann Arbor Science, Ann Arbor, Michigan.

    Google Scholar 

  • Holdren, G.C. and D.E. Armstrong. (1980). Factors effecting phosphorus release from intact lake sediment cores. Environ. Sci. Technol. 14:79–87.

    Article  Google Scholar 

  • Howarth, R.W. and J.J. Cole. (1985). Molybdenum availability in natural waters. Science 229:653–655.

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson, G.E. (1947). Treatise on Limnology I. Geography, Physics, and Chemistry. Wiley, New York.

    Google Scholar 

  • Jackson, T.A. and D.W. Schindler. (1975). The biogeochmistry of phosphorus in an experimental lake environment: evidence for the formation of humicmetaphosphate complexes. Verh. Int. Verein. Limnol. 19:211–221.

    Google Scholar 

  • Jansson, M. (1982). Does high nitrate supply induce internal phosphorus loading in lakes. Vatten 38:360–362.

    CAS  Google Scholar 

  • Jansson, M. (1987). Anaerobic dissolution of iron-phosphorus complexes in sediments due to the activity of nitrate-reducing bacteria. Microbiol. Ecol. 14: 87–89.

    Article  Google Scholar 

  • Kamp-Nielsen, L. (1974). Mud-water exchange of phosphate and other ions in undisturbed sediment cores and factors affecting the exchange rates. Arch. Hydrobiol. 73:218–237.

    Google Scholar 

  • Kamp-Nielsen, L. (1975). Seasonal variation in sediment-water exchange of nutrient ions in Lake Esrom. Verh. Int. Verein. Limnol. 19:1057–1065.

    Google Scholar 

  • Khalid, R.A., W.H. Patrick, Jr., and R.P. Gambrell. (1978). Effect of dissolved oxygen on heavy metals, phosphorus, and nitrogen in an estuarine sediment. Estuarine Coastal Mar. Sci. 6:21–35.

    Article  CAS  Google Scholar 

  • Krom, M.D. and R.A. Berner. (1980). Adsorption of phosphate in anoxic marine sediments. Limnol. Oceanogr. 25:797–806.

    Article  CAS  Google Scholar 

  • Larsen, D.P., J. VanSickle, K.W. Malueg, and P.D. Smith. (1979). The effect of wastewater phosphorus removal on Shagawa Lake, Minnesota: phosphorus supplies, lake phosphorus and chlorophyll a. Water Res. 13:1259–1272.

    Article  CAS  Google Scholar 

  • Lean, D.R.S., D.J. McQueen, and V.A. Story. (1986). Phosphate transport during hypolimnetic aeration. Arch. Hydrobiol. 108:269–280.

    Google Scholar 

  • Li, W.C., D.E. Armstrong, J.D.H. Williams, R.F. Harris, and J.K. Syers. (1972). Rate and extent of inorganic phosphate exchange in lake sediments. Soil Sci. Soc. Am. Proc. 36:279–285.

    Article  CAS  Google Scholar 

  • Likens, G.E., J.S. Eaton, N.M. Johnson, and R.S. Pierce. (1985). Mirror Lake-Physical and chemical characteristics. E. Flux and balance of water and chemicals. In: An Ecosystem Approach to Aquatic Ecology: Mirror Lake and its Environment, G.E. Likens, ed. Springer-Verlag, New York, pp. 135–155.

    Google Scholar 

  • Likens, G.E., F.H. Bormann, R.S. Pierce, J.S. Eaton, and N.M. Johnson. (1977). Biogeochemistry of a Forested Ecosystem. Springer-Verlag, New York.

    Google Scholar 

  • Moeller, R. (1985). Paleolimnology—A2. Contemporary sedimentation. In: An Ecosystem Approach to Aquatic Ecology: Mirror Lake and Its Environment, G.E. Likens, ed. Springer-Verlag, New York, pp. 355–366.

    Google Scholar 

  • Mortimer, C.H. (1941). The exchange of dissolved substances between mud and water in lakes (Parts I and II). J. Ecol. 29:280–329.

    Article  CAS  Google Scholar 

  • Mortimer, C.H. (1942). The exchange of dissolved substances between mud and water in lakes (Parts III and IV). J. Ecol. 30:147–201.

    Article  CAS  Google Scholar 

  • Mortimer, C.H. (1971). Chemical exchanges between sediments and water in the Great Lakes — speculations on probable regulating mechanisms. Limnol. Oceanogr. 16:387–404.

    Article  CAS  Google Scholar 

  • Neess, J.C. (1949). Development and status of pond fertilization in central Europe. Trans. Am. Fish. Soc. 76:335–358.

    Article  Google Scholar 

  • Nurnberg, G. (1984). The prediction of internal phosphorus load in lakes with anoxic hypolimnia. Limnol. Oceanogr. 29:111–124.

    Article  CAS  Google Scholar 

  • Olsen, S. (1964). Phosphate equilibrium between reduced sediments and water. Verh. Int. Verein. Limnol. 15:333–341.

    CAS  Google Scholar 

  • Ostrofsky, M.L., D.A. Osborne, and T.J. Zebulske. (1989). Relationship between anaerobic sediment phosphorus release and sedimetary phosphorus species. Can. J. Fish. Aquat. Sci. 46:416–419.

    Article  CAS  Google Scholar 

  • Peng, T.H. and W.S. Broecker. (1987). C/P ratios in marine detritus. Global Biogeochem. Cycles 1:155–161.

    Article  CAS  Google Scholar 

  • Quigley, M.A. and J.A. Robbins. (1986). Phosphorus release processes in nearshore Lake Michigan. Can. J. Fish. Aquat. Sci. 43:1201–1207.

    Article  Google Scholar 

  • Reynoldson, T.B., Jr. and H.R. Hamilton. (1981). Spatial heterogeneity in whole lake sediments towards a loading estimate. Hydrobiologia 91:235–240.

    Google Scholar 

  • Richards, F.A., J.D. Cline, W.W. Broenkow, and L.P. Atkinson. (1965). Some consequences of the decomposition of organic matter in Lake Nittinat, an anoxic fjord. Limnol. Oceanogr. 10 (Suppl.):R185–R201.

    Article  Google Scholar 

  • Richardson, C.J. (1985). Mechanisms controlling phoshorus retention capacity in freshwater wetlands. Science 228:1424–1430.

    Article  PubMed  CAS  Google Scholar 

  • Ryther, J.H. and W.M. Dunstan. (1971). Nitrogen phophorus and eutrophication in coastal marine environments. Science 171:1008–1013.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, D.W. (1977). Evolution of phosphorus limitation in lakes. Science 195: 260–262.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, D.W. and E.J. Fee. (1974). Experimental lakes area: whole-lake experiments in eutrophication. Can. J. Fish. Res. B. Can. 31:937–953.

    Article  Google Scholar 

  • Schindler, D.W., R.H. Hesslein, and M.A. Turner. (1987). Exchange of nutrients between sediments and water after 15 years of experimental eutrophication. Can. J. Fish. Aquat. Sci. 44 (Suppl.):26–33.

    Article  CAS  Google Scholar 

  • Schindler, D.W., R.W. Newburg, K.G. Beaty, and P. Campbell. (1976). Natural water and chemical budgets for a small precambrian lake basin in central Canada. J. Fish. Res. Bd. Can. 33:2536–2543.

    Article  Google Scholar 

  • Sen Gupta, R. (1973). A Study on Nitrogen and Phosphorus and Their Interrelationships in the Baltic. Ph.D. Dissertation, University of Gotëborg, Sweden.

    Google Scholar 

  • Shaw, J.F.H. (1989). Potential Release of Phosphorus from Shallow Sediments to Lakewater. Ph.D. Dissertation, University of Alberta, Canada.

    Google Scholar 

  • Smith, S.V., W.J. Wiebe, J.T. Hollibaugh, S.J. Dollar, S.W. Hager, B.E. Cole, G.W. Tribble, and P.A. Wheeler. (1987). Stoichiometry of C, N, P, and Si fluxes in a temperate-climate embayment. J. Mar. Res.45:427–460.

    Article  CAS  Google Scholar 

  • Stauffer, R.E. (1985). Nutrient internal cycling and the trophic regulation of Green Lake Wisconsin. Limnol. Oceanogr. 30:347–363.

    Article  CAS  Google Scholar 

  • Strayer, R.F. and J.M. Tiedje. (1978). In situ methane production in a small hypereutrophic hard-water lake: loss of methane from sediments by vertical diffusion and ebullition. Limnol. Oceanogr. 23:1201–1206.

    Article  CAS  Google Scholar 

  • Stumm, W. and J.J. Morgan. (1981). Aquatic Chemistry, 2d Ed. An Introduction Emphasizing Chemical Equilibria in Natural Waters. Wiley, New York.

    Google Scholar 

  • Sugawara, K., T. Koyama, and E. Kamata. (1957). Recovery of precipitated phosphate from lake muds related to sulfate reduction. Chem. Inst. Fac. Sci. Nagoya Univ. 5:60–67.

    CAS  Google Scholar 

  • Syers, J.K., R.F. Harris, and D.E. Armstrong. (1970). Phosphate chemistry in lake sediments. J. Env. Qual. 2:1–14.

    Article  Google Scholar 

  • Taggart, C.T. (1984). Hypolimnetic aeration ad zooplankton distribution: a possible limitation to the restoration of cold-water fish production. Can. J. Fish. Aquat. Sci. 41:191–198.

    Article  Google Scholar 

  • Taylor, L.R. (1989). Objective and experiment in long-term research. In: Long-Term Studies in Ecology: Approaches and Alternatives, G.E. Likens, ed. Springer-Verlag, New York, pp. 20–70.

    Google Scholar 

  • Tessenow, V.U. (1972). Solution diffusion and adsorption in the upper layer of lake sediments. I: A long term experiment under aerobic and anaerobic conditions in a steady-state system. Arch. Hydrobiol. 38 (Suppl.):353–398.

    Google Scholar 

  • Tezuka, Y. (1989). The C:N:P ratio of phytoplankton determines the relative amounts of dissolved inorganic nitrogen and phosphorus released during aerobic decomposition. Hydrobiologia 173:55–62.

    Article  CAS  Google Scholar 

  • Uehlinger, U. and J. Bloesch. (1987). Variation in the C:P ratio of suspended and settling seston and its significance for P uptake calculations. Freshwater Biol. 17: 99–108.

    Article  CAS  Google Scholar 

  • Valiela, I. (1984.) Marine Ecological Processes. Springer-Verlag, New York.

    Google Scholar 

  • Vallentyne, J.R. (1972). Freshwater supplies and pollution: effects of demographic explosion on water and man. In: The Environmental Future, N. Polunin, ed. Macmillan, New York, pp. 181–211.

    Google Scholar 

  • Vollenweider, R.A. (1968). Scientific fundamentals of eutrophication of lakes and flowing waters with particular reference to nitrogen and phosphorus as factors in eutrophication. OECD Tech. Rep. DAS CSI 68 27.

    Google Scholar 

  • Wetzel, R.G. (1983). Limnology. W.B. Saunders, Philadelphia.

    Google Scholar 

  • Winter, T.C. (1977). Ground-water component of lake water and nutrient budgets. Verh. Int. Verein. Limnol. 20:438–444.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Caraco, N., Cole, J.J., Likens, G.E. (1991). A Cross-System Study of Phosphorus Release from Lake Sediments. In: Cole, J., Lovett, G., Findlay, S. (eds) Comparative Analyses of Ecosystems. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3122-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3122-6_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7804-7

  • Online ISBN: 978-1-4612-3122-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics