Skip to main content

Searching for Specific Measures of Physiological Stress in Forest Ecosystems

  • Chapter

Abstract

Subtle changes in climate, atmospheric chemistry, or management policies may eventually lead to shifts in ecosystem structure. Stresses may occur before shifts in structure are evident. Insights regarding the development of stress can be obtained by monitoring decreases in photosynthetic or growth efficiency. Where decreases in efficiency are noted, additional selective measures are suggested to confirm physiological limitations and to help distinguish stress induced by drought from pollution or management policies. Changes in carbon partitioning, nutrient balance, biochemical indices, and stable isotope composition help identify probable sources of stress. Confirmation requires experimentation and regional assessment across confirmed environmental gradients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber, J.D., K.J. Nadelhoffer, P. Steudler, and J.M. Melillo. (1989). Nitrogen Saturation in northern forest ecosystems. BioScience 39:378–386.

    Article  Google Scholar 

  • Araki, M. (1971). The studies on specific leaf areas of forest trees: I. The effects of RLI, season, density and fertilization on the specific leaf area of larch (Larix leptolepis Gord.) leaves. J. Jpn. For. Soc. 53:359–367.

    Google Scholar 

  • Bondietti, E.A., C.F. Baes, III, and S.B. McLaughlin. (1989). The potential of trees to record aluminum mobilization and changes in alkaline earth availability. In: Biological Markers of Air-Pollution Stress and Damage in Forests. National Academy Press, Washington, D.C., pp. 281–292.

    Google Scholar 

  • Christiansen, E., R.H. Waring, and A.A. Berryman. (1987). Resistance of conifers to bark beetle attack: searching for general relationships. For. Ecol. Manage. 22: 89–106.

    Article  Google Scholar 

  • Contrufo, C. (1983). Xylem nitrogen as a possible diagnostic nitrogen test for loblolly pine. Can. J. For. Res. 13:355–357.

    Article  Google Scholar 

  • Cook, E.R., A.H. Johnson, and T.J. Biasing. (1987). Forest decline: modeling the effect of climate in tree rings. Tree Physiol. 3:27–40.

    PubMed  Google Scholar 

  • Cooper, L.W. and M.J. DeNiro. (1989). Covariance of oxygen and hydrogen isotopic composition in plant water: species effects. Ecology 70:1619–1628.

    Article  Google Scholar 

  • DeLucia, E.H., W.H. Schlesinger, and W.D. Billings. (1988). Water relations and the maintenance of Sierran conifers on hydrothermally altered rock. Ecology 69: 303–311.

    Article  Google Scholar 

  • Edwards, T.W.D. and P. Fritz. (1986). Assessing meteoric water composition and relative humidity from 18O and 2H in wood cellulose: paleoclimatic implications for southern Ontario, Canada. Appl. Geochem. 1:715–723.

    Article  CAS  Google Scholar 

  • Francey, R.J. and G.D. Farquhar. (1982). An explanation of 13C/12C variation in tree rings. Nature (London) 297:28–31.

    Article  CAS  Google Scholar 

  • Goward, S.N. and D. Dye. (1987). Evaluating North American net primary productivity with satellite observations. Adv. Space Res. 7:165–174.

    Article  Google Scholar 

  • Graumlich, L.J., L.B. Brubaker, and C.C. Grier. (1989). Long-term trends in forest net primary productivity: Cascade Mountains, Washington. Ecology 70:405–410.

    Article  Google Scholar 

  • Grime, J.P. (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111:1169–1194.

    Article  Google Scholar 

  • Ingestad, T. (1979). Mineral nutrient requirements for Pinus silvestris and Picea abies seedlings. Physiol. Plant. 45:373–390.

    Article  CAS  Google Scholar 

  • Ingestad, T. (1987). New concepts on soil fertility and plant nutrition as illustrated by research on forest trees and stands. Geoderma 40:237–252.

    Article  Google Scholar 

  • Kira, T. and T. Shidei. (1967). Primary production and turnover of organic matter in different forest ecosystems of the western Pacific. Jpn. J. Ecol. 10:70–87.

    Google Scholar 

  • Landsberg, J.J. and L.L. Wright. (1989). Comparisons among Populus clones and intensive culture conditions, using an energy-conversion model. For. Ecol. Manage. 27:129–147.

    Article  Google Scholar 

  • Lang, A.R.G. (1987). Simplified estimate of leaf area index from transmittance of the sun’s beam. Agric. For. Meteorol. 41:179–186.

    Article  Google Scholar 

  • Mason, H.L. and J.H. Langenheim. (1957). Language analysis and the concept of environment. Ecology 38:325–339.

    Article  Google Scholar 

  • McLaughlin, S.B., R.K. McConathy, D. Duvick, and K.L. Mann (1982). Effects of chronic air-pollution stress on photosynthesis, carbon allocation, and growth of white pine. For. Sci. 28:60–70.

    Google Scholar 

  • Monteith, J.L. (1977). Climate and efficiency of crop production in Britain. Philos. Trans. R. Soc. Lond. B 281:277–294.

    Article  Google Scholar 

  • Mould, E.D. and C.T. Robbins. (1981). Nitrogen metabolism in elk. J. Wildlife Manage. 45:323–334.

    Article  Google Scholar 

  • Myers, B.J. (1988). Water stress integral —a link between short-term stress and long-term growth. Tree Physiol. 4:315–324.

    PubMed  Google Scholar 

  • Nordgren, A., E. Baath, and B. Soderstrom. (1988). Evaluation of soil respiration characteristics to assess heavy metal effects on soil microorganisms using glutamic acid as a substrate. Soil Biol. Biochem. 20:949–954.

    Article  CAS  Google Scholar 

  • Nygren, M. and S. Kellomaki. (1983). Effect of shading on leaf structure and photosynthesis in young birch, Betula pendula Roth, and B. pubescens Ehrn. For. Ecol. Manage. 7:119–132.

    Article  Google Scholar 

  • Odum, E.P. (1969). The strategy of ecosystem development. Science 164:262–270.

    Article  PubMed  CAS  Google Scholar 

  • Oren, R., E.-D. Schulze, K.S. Werk, J. Meyer, B.U. Schneider, and H. Heilmeier. (1988). Performance of two Picea abies (L.) Karst, stands at different stages of decline. I. Carbon relations and stand growth. Oecologia 75:25–37.

    Article  Google Scholar 

  • Osonubi, O., R. Oren, K.S. Werk, E.-D. Schulze, and H. Heilmeier (1988). Performance of two Picea abies (L.) Karst, stands at different stages of decline. IV. Xylem sap concentrations of magnesium, calcium, potassium and nitrogen. Oecologia 77:1–6.

    Article  Google Scholar 

  • Peterson, B.J. and B. Fry. (1987). Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18:293–320.

    Article  Google Scholar 

  • Rose, C. (1990). Application of the Carbon/Nutrient Balance Hypothesis to Predicting the Nutritional Quality of Blueberry Foliage to Deer in Southeastern Alaska. Ph.D. Dissertation, Oregon State University, Corvallis, Oregon.

    Google Scholar 

  • Rundel, P.W., J.R. Ehleringer, and K.A. Nagy, eds. (1989). Stable Isotopes in Ecological Research. Ecological Series 68, Springer-Ver lag, New York.

    Google Scholar 

  • Schimel, D. (1988). Calculation of microbial growth efficiency from 15N immobilization. Biogeochemistry 6:239–243.

    Article  Google Scholar 

  • Sternberg, L.L. and P.K. Swart. (1987). Utilization of fresh water and ocean water by coastal plants of southern Florida. Ecology 68:1898–1905.

    Article  Google Scholar 

  • Sternberg, L.S.L., S.S. Mulkey, and S.J. Wright. (1989). Ecological interpretation of leaf carbon ratios: influence of respired carbon dioxide. Ecology 70:1317–1324.

    Article  Google Scholar 

  • Sucoff, E. (1972). Water potential in red pine: soil moisture, evapotranspiration, crown position. Ecology 53:681–686.

    Article  Google Scholar 

  • Tucker, C.J. (1977). Spectral estimation of grass canopy variables. Remote Sens. Environ. 6:11–26.

    Article  Google Scholar 

  • Turner, J. and M.J. Lambert. (1986). Nutrition and nutritional relationships of Pinus radiata. Annu. Rev. Ecol. Syst. 17:325–350.

    Article  Google Scholar 

  • Vessey, J.K. and D.B. Layzell. (1987). Regulation of assimilate and partitioning in soybean. Plant Physiol. 83:341–348.

    Article  PubMed  CAS  Google Scholar 

  • Waring, R.H. (1983). Estimating forest growth and efficiency in relation to canopy leaf area. Adv. Ecol. Res. 13:327–354.

    Article  Google Scholar 

  • Waring, R.H. (1985). Imbalanced ecosystems: assessments and consequences. Forest Ecol. Manage. 12:93–112.

    Article  Google Scholar 

  • Waring, R.H. (1987). Characteristics of trees predisposed to die. BioScience 37: 569–574.

    Article  Google Scholar 

  • Waring, R.H. and W.H. Schlesinger. (1985). Forest Ecosystems: Concepts and Management. Academic Press, Orlando, Florida.

    Google Scholar 

  • White, J.W.C., E.R. Cook, J.R. Lawrence, and W.S. Broecker. (1985). The D/H ratios of sap in trees: implications for water sources and tree ring D/H ratios. Geochim. Cosmochim. Acta 49:237–249.

    Article  CAS  Google Scholar 

  • Whittaker, R.H. (1970). Communities and Ecosystems, 1st Ed. Macmillan, New York.

    Google Scholar 

  • Winner, W.E., J.D. Bewley, H.R. Krouse, and H.M. Brown (1978). Stable sulfur isotope analysis of SO2 pollution impact on vegetation. Oecologia 36:351–361.

    Article  Google Scholar 

  • Winner, W.E. and H.A. Mooney. (1985). Ecology of SO2 resistance. V. Effect of volcanic SO2 on native Hawaiian plants. Oecologia 66:387–393.

    Article  Google Scholar 

  • Worbes, M. and W.J. Junk. (1989). Dating tropical trees by means of 14C from bomb tests. Ecology 70:503–511.

    Article  Google Scholar 

  • Yapp, C.J. and S. Epstein. (1982). Climatic significance of the hydrogen isotope ratios in tree cellulose. Science 297:636–639.

    CAS  Google Scholar 

  • Zedler, B., R. Plarre, and G.M. Rothe. (1986). Impact of atmospheric pollution on the protein and amino acid metabolism of spruce Picea abies trees. Environ. Pollut. 40:193–212.

    Article  CAS  Google Scholar 

  • Zimmermann, R., R. Oren, E.-D. Schulze, and K.S. Werk. (1988). Performance of two Picea abies (L.) Karst, stands at different stages of decline. II. Photosynthesis and leaf conductance. Oecologia 76:513–518.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Waring, R.H. (1991). Searching for Specific Measures of Physiological Stress in Forest Ecosystems. In: Cole, J., Lovett, G., Findlay, S. (eds) Comparative Analyses of Ecosystems. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3122-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3122-6_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7804-7

  • Online ISBN: 978-1-4612-3122-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics