Functional Consequences of Regional Heterogeneity in the Left Ventricle

  • Wilbur Y. W. Lew
Part of the Institute for Nonlinear Science book series (INLS)


The left ventricle is characterized by significant regional heterogeneity in structure, electrophysiology, and function. This discussion focuses on the functional consequences of regional heterogeneity. First we examine the extent of regional heterogeneity in deformations observed under physiologic conditions. The importance of considering the direction as well as the magnitude of maximal deformations will be emphasized. Second, we discuss potential mechanisms for regional heterogeneity in deformations. The potential contribution of electrophysiologic, anatomic, structural, and geometric factors will be considered. Third, we examine the functional consequences of regional heterogeneity using experimental models. Regional ischemia is used to examine the mechanical interaction between ischemic and nonischemic areas, that is, the interaction between “weak” and “strong” muscles. Regional inotropic stimulation is used to produce subtle alterations in regional heterogeneity to examine the mechanical interaction between “strong” and “stronger” muscles. Finally, we correlate some of the predictions from theoretical models of acute ischemia and chronic infarction with the experimental observations.


Left Ventricle Left Anterior Descend Ventricular Pace Regional Heterogeneity Ischemic Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E.T. Angelakos. Regional distribution of catecholamines in the dog heart. Circ. Res., 16:39–44, 1965.Google Scholar
  2. [2]
    G. Arisi, E. Macchi, S. Baruffi, S. Spaggiari, and B. Taccardi. Potential fields on the ventricular surface of the exposed dog heart during normal excitation. Circ. Res., 52:706–715, 1983.Google Scholar
  3. [3]
    T. Arts, P.C. Veenstra, and R.S. Reneman. Epicardial deformation and left ventricular wall mechanics during ejection in the dog. Am. J. Physiol., 243:H379–H390, 1982.Google Scholar
  4. [4]
    F.R. Badke, P. Boinay, and J.W. Covell. Effects of ventricular pacing on regional left ventricular performance in the dog. Am. J. Physiol., 238:H858–H867, 1980.Google Scholar
  5. [5]
    A.S. Blaustein and W.H. Gaasch. Myocardial relaxation VI: Effects of ß-adrenergic tone and asynchrony on LV relaxation rate. Am. J. Physiol., 244:H417–H422, 1983.Google Scholar
  6. [6]
    D.K. Bogen, A. Needleman, and T.A. McMahon. An analysis of myocardial infarction: The effect of regional changes in contractility. Circ. Res., 55:805–815, 1984.Google Scholar
  7. [7]
    D.K. Bogen, S.A. Rabinowitz, A. Needleman, T.A. McMahon, and W.H. Abelmann. An analysis of the mechanical disadvantage of myocardial infarction in the canine left ventricle. Circ. Res., 47:728–741, 1980.Google Scholar
  8. [8]
    A.A. Bove, T.H. Kreulen, and J.F. Spann. Computer analysis of left ventricular dynamic geometry in man. Am. J. Cardiol., 41:1239–1248, 1978.CrossRefGoogle Scholar
  9. [9]
    D.L. Brutsaert. Nonuniformity: A physiologic modulator of contraction and relaxation of the normal heart. J. Am. Coll. Cardiol., 9:341–348, 1987.CrossRefGoogle Scholar
  10. [10]
    J.D. Carroll, O.M. Hess, H.O. Hirzel, and H.P. Krayenbuehl. Exerciseinduced ischemia: The influence of altered relaxation on early diastolic pressures. Circulation, 67:521–528, 1983.CrossRefGoogle Scholar
  11. [11]
    M. Courtois, S.J. Kovacs Jr., and P.A. Ludbrook. Transmural pressure-flow velocity relation: Importance of regional pressure gradients in the left ventricle during diastole. Circulation, 78:1459–1468, 1988.CrossRefGoogle Scholar
  12. [12]
    D.A. Cox and S.F. Vatner. Myocardial function in areas of heterogenous perfusion after coronary artery occlusion in conscious dogs. Circulation, 66:1154–1158, 1982.CrossRefGoogle Scholar
  13. [13]
    V.B. Elings, G.E. Jahn, and J.H.K. Vogel. A theoretical model of regionally ischemic myocardium. Circ. Res., 41:722–729, 1977.Google Scholar
  14. [14]
    T.R. Fenton, J.M. Cherry, and F.A. Klassen. Transmural myocardial deformation in the canine left ventricular wall. Am. J. Physiol., 235:H523–H530, 1978.Google Scholar
  15. [15]
    M.R. Franz, K. Bargheer, W. Rafflenbeul, A Haverich, and P.R. Lichtlen. Monophasic action potential mapping in human subjects with normal electrocardiograms: Direct evidence for the genesis of the T wave. Circulation, 75:379–386, 1987.CrossRefGoogle Scholar
  16. [16]
    K.P. Gallagher, R.A. Gerren, M.C. Stirling, et al. The distribution of functional impairment across the lateral border of acutely ischemic myocardium. Circ. Res., 58:570–583, 1986.Google Scholar
  17. [17]
    K.P. Gallagher, G. Osakada, O.M. Hess, J.A. Koziol, W.S. Kemper, and J. Ross Jr. Subepicardial segmental function during coronary stenosis and the role of myocardial fiber orientation. Circ. Res., 50:352–359, 1982.Google Scholar
  18. [18]
    H.J. Gelberg, B.H. Brundage, S. Glantz, and W.W. Parmley. Quantitative left ventricular wall motion analysis: A comparison of area, chord and radial methods. Circulation, 59:991–1000, 1979.Google Scholar
  19. [19]
    T. Gillebert and W.Y.W. Lew. Nonuniformity and volume loading independently influence isovolumic relaxation rates. Am. J. Physiol., 257:H1927–H1935, 1989.Google Scholar
  20. [20]
    Y. Goto, Y. Igarashi, O. Yamada, K. Hiramori, and H. Suga. Hyperkinesis without the Frank-Starling mechanism in a nonischemic region of acutely ischemic excised canine heart. Circulation, 77:468–477, 1988.CrossRefGoogle Scholar
  21. [21]
    Y. Goto, Y. Igarashi, Y. Yasumura, et al. Integrated regional work equals total left ventricular work in regionally ischemic canine heart. Am. J. Physiol., 254:H894–H904, 1988.Google Scholar
  22. [22]
    R.A. Greenbaum, S.Y. Ho, D.G. Gibson, A.E. Becker, and R.H. Anderson. Left ventricular fibre architecture in man. Br. Heart J., 45:248–263, 1981.CrossRefGoogle Scholar
  23. [23]
    A.F. Grimm, H.L. Lin, and B.R. Grimm. Left ventricular free wall and intraventricular pressure-sarcomere length distributions. Am. J. Physiol., 239:H101–H107, 1980.Google Scholar
  24. [24]
    C.L. Grines, E.J. Topol, R.M. Califf, et al. Prognostic implications and predictors of enhanced regional wall motion of the noninfarct zone after thrombolysis and angioplasty therapy of acute myocardial infarction. Circulation, 80:245–253, 1989.CrossRefGoogle Scholar
  25. [25]
    P.A. Gwirtz, D. Franklin, and H.J. Mass. Modulation of synchrony of left ventricular contraction by regional adrenergic stimulation in conscious dogs. Am. J. Physiol., 251:H490–H495, 1986.Google Scholar
  26. [26]
    R.V. Haendchen, H.L. Wyatt, G. Maurer, et al. Quantitation of regional cardiac function by two-dimensional echocardiography: I. Patterns of contraction in the normal left ventricle. Circulation, 67:1234–1244, 1983.CrossRefGoogle Scholar
  27. [27]
    D.E. Hansen, G.T. Daughters II, E.B. Stinson, E.L. Alderman, N.B. Ingels Jr., and D.C. Miller. Torsional deformation of the left ventricular midwall in human hearts with intramyocardial markers: Regional heterogeneity and sensitivity to the inotropic effects of abrupt rate changes. Circ. Res., 62:941–952, 1988.Google Scholar
  28. [28]
    F.W. Heineman and J. Grayson. Transmural distribution of intramyocardial pressure measured by micropipette technique. Am. J. Physiol., 249:H1216–H1223, 1985.Google Scholar
  29. [29]
    G.R. Heyndrickx, P.J. Vantrimpont, M.F. Rousseau, and H. Pouleur. Effects of asynchrony on myocardial relaxation at rest and during exercise in conscious dogs. Am. J. Physiol., 254:H817–H822, 1988.Google Scholar
  30. [30]
    L. Hittinger, B. Crozatier, J-P. Belot, and M. Pierrot. Regional ventricular segmental dynamics in normal conscious dogs. Am. J. Physiol., 253:H713–H719, 1987.Google Scholar
  31. [31]
    B.D. Hoit and W.Y.W. Lew. Functional consequences of acute anterior vs. posterior wall ischemia in canine left ventricles. Am. J. Physiol., 254:H1065–H1073, 1988.Google Scholar
  32. [32]
    B.D. Hoit, W.Y.W. Lew, and M.M. LeWinter. Regional variation in pericardial contact pressure in the canine ventricle. Am. J. Physiol., 255:H1370–H1377, 1988.Google Scholar
  33. [33]
    T. Hosino, H. Fujiwara, C. Kawai, and Y. Hamashima. Myocardial fiber diameter and regional distribution in the ventricular wall of normal adult hearts, hypertensive hearts and hearts with hypertrophic cardiomyopathy. Circulation, 67:1109–1116, 1983.CrossRefGoogle Scholar
  34. [34]
    R.M. Huisman, P. Sipkema, N. Westerhof, and G. Elzinga. Comparison of models used to calculate left ventricular wall force. Med. Biol. Eng. Cornp., 18:133–144, 1980.CrossRefGoogle Scholar
  35. [35]
    A.J. Ilebekk, J. Lekven, and F. Kiil. Left ventricular asynergy during intracoronary isoproterenol infusion in dogs. Am. J. Physiol., 239:H594–H600, 1980.Google Scholar
  36. [36]
    N.B. Ingels Jr., G.T. Daughters II, E.B. Stinson, and E.L. Alderman. Left ventricular midwall dynamics in the right anterior oblique projection in intact unanesthetized man. J. Biomech., 14(4):221–233, 1981.CrossRefGoogle Scholar
  37. [37]
    N.B. Ingels Jr., G.T. Daughters II, E.B. Stinson, and E.L. Alderman. Measurement of midwall myocardial dynamics in intact man by radiography of surgically implanted markers. Circulation, 52:859–867, 1975.Google Scholar
  38. [38]
    N.B. Ingels Jr., D.E. Hansen, G.T. Daughters II, E.B. Stinson, E.L. Alderman, and D.C. Miller. Relation between longitudinal, circumferential, and oblique shortening and torsional deformation in the left ventricle of the transplanted human heart. Circ. Res., 64:915–927, 1989.Google Scholar
  39. [39]
    W. Jaarsma, C.A. Visser, V.M.J. Eenige, et al. Prognostic implications of regional hyperkinesia and remote asynergy of noninfarcted myocardium. Am. J. Cardiol., 58:394–398, 1986.CrossRefGoogle Scholar
  40. [40]
    R.F. Janz and R.J. Waldron. Predicted effect of chronic apical aneurysms on the passive stiffness of the human left ventricle. Circ. Res., 42:255–263, 1978.Google Scholar
  41. [41]
    S. Kimura, A.L. Bassett, T. Furukawa, J. Cuevas, and R.J. Myerburg. Electrophysiological properties and responses to stimulated ischemia in cat ventricular myocytes of endocardial and epicardial origin. Circ. Res., 66:469–477, 1990.Google Scholar
  42. [42]
    S.C. Klausner, T.J. Blair, W.F. Bulawa, G.M. Jeppson, R.L. Jensen, and P.D. Clayton. Quantitative analysis of segmental wall motion through systole and diastole in the normal human left ventricle. Circulation, 65:580–590, 1982.CrossRefGoogle Scholar
  43. [43]
    Y. Kong, J. Morris Jr., and H.D. Mcintosh. Assessment of regional myocardial performance from biplane coronary cineangiograms. Am. J. Cardiol., 27:529–537, 1971.CrossRefGoogle Scholar
  44. [44]
    T. Kumada, J.S. Karliner, H. Pouleur, K.P. Gallagher, K. Shirato, and J. Ross Jr. Effects of coronary occlusion on early ventricular diastolic events in conscious dogs. Am. J. Physiol., 237:H542–H549, 1979.Google Scholar
  45. [45]
    J.D. Laird and H.P. Vellekoop. Time course of passive elasticity of myocardial tissue following experimental infarction in rabbits and its relation to mechanical dysfunction. Circ. Res., 41:715–721, 1977.Google Scholar
  46. [46]
    M. Laks, M.J. Nisenson, and H.J.C. Swan. Myocardial cell and sarcomere lengths in the normal dog heart. Circ. Res., 21:671–678, 1967.Google Scholar
  47. [47]
    W.Y.W. Lew. Influence of ischemic zone size on nonischemic area function in the canine left ventricle. Am. J. Physiol., 252:H990–H997, 1987.Google Scholar
  48. [48]
    W.Y.W. Lew and E. Ban-Hayashi. Mechanisms of improving regional and global ventricular function by preload alterations during acute ischemia in the canine left ventricle. Circulation, 72:1125–1134, 1985.CrossRefGoogle Scholar
  49. [49]
    W.Y.W. Lew, Z. Chen, B. Guth, and J.W. Covell. Mechanisms of augmented segment shortening in nonischemic areas during acute ischemia of the canine left ventricle. Circ. Res., 56:351–358, 1985.Google Scholar
  50. [50]
    W.Y.W. Lew and M.M. LeWinter. Regional circumferential lengthening patterns in canine left ventricle. Am. J. Physiol., 245:H741–H748, 1983.Google Scholar
  51. [51]
    W.Y.W. Lew and M.M. LeWinter. Regional comparison of midwall segment and area shortening in the canine left ventricle. Circ. Res., 58:678–691, 1986.Google Scholar
  52. [52]
    W.Y.W. Lew and C.M. Rasmussen. Influence of nonuniformity on the rate of left ventricular pressure fall in the dog. Am. J. Physiol., 256:H222–H232, 1989.Google Scholar
  53. [53]
    M.M. LeWinter, R.S. Kent, J.M. Kroener, T.E. Carew, and J.W. Covell. Regional differences in myocardial performance in the left ventricle of the dog. Circ. Res., 37:191–199, 1975.Google Scholar
  54. [54]
    D. Ling, J.S. Rankin, C.H. Edwards, RA. McHale, and R.W. Anderson. Regional diastolic mechanics of the left ventricle in the conscious dog. Am. J. Physiol., 236:H323–H330, 1979.Google Scholar
  55. [55]
    S.H. Litovsky and C. Antzelevitch. Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ. Res., 62:116–126, 1988.Google Scholar
  56. [56]
    G.B.J. Mancini, S.F. DeBoe, S.B. Anselmo, M.T. LaFree, and R.A. Vogel. Quantitative regional curvature analysis: An application of shape determination for the assessment of segmental left ventricular function in man. Am. Heart J., 113:326–334, 1987.CrossRefGoogle Scholar
  57. [57]
    A.D. McCulloch, B.H. Smaill, and P.J. Hunter. Regional left ventricular epicardial deformation in the passive dog heart. Circ. Res., 64:721–733, 1989.Google Scholar
  58. [58]
    G.D. Meier, M.C. Ziskin, W.P. Santamore, and A.A. Bove. Kinematics of the beating heart. IEEE Trans. Biomed. Eng., BME-27:319–329, 1980.CrossRefGoogle Scholar
  59. [59]
    X-H Ning, T.N. Zweng, and K.P. Gallagher. Ejection and isovolumic contraction-phase wall thickening in nonischemic myocardium during coronary occlusion. Am. J. Physiol., 258:H490–H499, 1990.Google Scholar
  60. [60]
    R.C. Park, W.C. Little, and R.A. O’Rourke. Effect of alteration of left ventricular activation sequence on the left ventricular end systolic pressure-volume relation in closed-chest dogs. Circ. Res., 57:706–717, 1985.Google Scholar
  61. [61]
    W.W. Parmley, L. Chuck, C. Kivowitz, J.M. Matloff, and J.C. Swan. In vitro length-tension relations of human ventricular aneurysms: Relation to stiffness to mechanical disadvantage. Am. J. Cardiol., 32:889–894, 1973.CrossRefGoogle Scholar
  62. [62]
    G.L. Pierpont, E.G. DeMaster, and J.N. Cohn. Regional differences in adrenergic function within the left ventricle. Am. J. Physiol., 246: H824–H829, 1984.Google Scholar
  63. [63]
    J.S. Rankin, P.A. McHale, C.E. Arentzen, J.C. Greenfield Jr., and R.W. Anderson. The three-dimensional dynamic geometry of the left ventricle in the conscious dog. Circ. Res., 39:304–313, 1976.Google Scholar
  64. [64]
    L. Role, D. Bogen, T.A. McMahon, and W.H. Abelmann. Regional variations in calculated diastolic wall stress in rat left ventricle. Am. J. Physiol., 235:H247–H250, 1978.Google Scholar
  65. [65]
    M.A. Ross and D.D. Streeter Jr. Nonuniform subendocardial fiber orientation in the normal macaque left ventricle. Eur. J. Cardiol., 3:229–247, 1975.Google Scholar
  66. [66]
    A.M. Scher and M.S. Spach. Cardiac depolarization and repolarization and the electrocardiogram. In R.M. Berne, N. Sperelakis, and S.R. Geiger, editors, Handbook of Physiology, Section 2: The Cardiovascular System, pages 357–392. American Physiological Society, Bethesda, MD, 1979.Google Scholar
  67. [67]
    R.M. Schneider, A. Chu, M. Akaishi, W.S. Weintraub, K.G. Morris, and F.R. Cobb. Left ventricular ejection fraction after acute coronary occlusion in conscious dogs: Relation to the extent and site of myocardial infarction. Circulation, 72:632–638, 1985.CrossRefGoogle Scholar
  68. [68]
    R.M. Schneider, K.G. Morris, A. Chu, K.B. Roberts, R E. Coleman, and F.R. Cobb. Relation between myocardial perfusion and left ventricular function following acute coronary occlusion: Disproportionate effects of anterior vs. inferior ischemia. Circ. Res., 60:60–71, 1987.Google Scholar
  69. [69]
    R. Shabetai. The Pericardium. Grune & Stratton, New York, 1981.Google Scholar
  70. [70]
    E. Shapiro, D.L. Marier, M.G. St. John Sutton, and D.G. Gibson. Regional non-uniformity in wall dynamics in normal left ventricle. Br. Heart J., 45:264–270, 1981.CrossRefGoogle Scholar
  71. [71]
    F.H. Sheehan, D.K. Stewart, H.T. Dodge, S. Mitten, E.L. Bolson, and B.G. Brown. Variability in the measurement of regional left ventricular wall motion from contrast angiograms. Circulation, 68:550–559, 1983.CrossRefGoogle Scholar
  72. [72]
    P.D. Stein, M. Marzilli, H.N. Sabbah, and T. Lee. Systolic and diastolic pressure gradients within the left ventricular wall. Am. J. Physiol., 238:H625–H630, 1980.Google Scholar
  73. [73]
    D.D. Streeter. Gross morphology and fiber geometry of the heart. In R.M. Berne, editor, Handbook of Physiology, Section 2, Volume 1, pages 61–112. American Physiological Society, Bethesda, MD, 1979.Google Scholar
  74. [74]
    D.D. Streeter Jr. and D.L. Bassett. Engineering analysis of myocardial fiber orientation in pig’s left ventricle in systole. Anat. Record, 155:503–511, 1966.CrossRefGoogle Scholar
  75. [75]
    D.D. Streeter Jr. and W.T. Hanna. Engineering mechanics for successive states in canine left ventricular myocardium: I. Cavity and wall geometry. Circ. Res., 33:639–655, 1973.Google Scholar
  76. [76]
    R. Tennant and C.J. Wiggers. The effect of coronary occlusion on myocardial contraction. Am. J. Physiol.,112:351–361, 1935.Google Scholar
  77. [77]
    P. Theroux, J. Ross Jr., D. Franklin, J.W. Covell, C.M. Bloor, and S. Sasayama. Regional myocardial function and dimensions early and late after myocardial infarction in the unanesthetized dog. Circ. Res., 40:158–165, 1977.Google Scholar
  78. [78]
    F.J. Villarreal and W.Y.W. Lew. Finite strains in the anterior and posterior wall of the canine left ventricle. Am. J. Physiol., 259: H1409–H1418, 1990.Google Scholar
  79. [79]
    F.J. Villarreal, L.K. Waldman, and W.Y.W. Lew. A technique for measuring regional two-dimensional finite strains in canine left ventricle. Circ. Res., 62:711–721, 1988.Google Scholar
  80. [80]
    L.K. Waldman, Y.C. Fung, and J.W. Covell. Transmural myocardial deformation in the canine left ventricle: normal in vivo threedimensional finite strains. Circ. Res., 57:152–163, 1985.Google Scholar
  81. [81]
    L.K. Waldman, D. Nosan, F.J. Villarreal, and J.W. Covell. Relation between transmural deformation and local myofiber direction in canine left ventricle. Circ. Res., 63:550–562, 1985.Google Scholar
  82. [82]
    T. Watanabe, L.M. Delbridge, J.O. Bustamante, and T.F. McDonald. Heterogeneity of the action potential in isolated rat ventricular myocytes and tissue. Circ. Res., 52:280–290, 1983.Google Scholar
  83. [83]
    T. Watanabe, P.M. Rautaharju, and T.F. McDonald. Ventricular action potentials, ventricular extracellular potentials, and the ECG of guinea pig. Circ. Res., 57:362–373, 1985.Google Scholar
  84. [84]
    A.W. Weigner, G.J. Allen, and O.H.L. Bing. Weak and strong myocardium in series: Implications for segmental dysfunction. Am. J. Physiol., 235:H776–H783, 1978.Google Scholar
  85. [85]
    C.J. Wiggers. The muscular reactions of the mammalian ventricles to artificial surface stimuli. Am. J. Physiol., 73:345–378, 1925.Google Scholar
  86. [86]
    C. Yoran, J.W. Covell, and J. Ross Jr. Structural basis for the ascending limb of left ventricular function. Circ. Res., 32:297–303, 1973.Google Scholar
  87. [87]
    C. Yoran, E.H. Sonnenblick, and E.S. Kirk. Contractile reserve and left ventricular function in regional myocardial ischemia in the dog. Circulation, 66:121–128, 1982.CrossRefGoogle Scholar
  88. [88]
    M.R. Zile, A.S. Blaustein, G. Shimizu, and W.H. Gaasch. Right ventricular pacing reduces the rate of left ventricular relaxation and filling. J. Am. Coll. Cardiol.,10:702–709, 1987.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1991

Authors and Affiliations

  • Wilbur Y. W. Lew
    • 1
    • 2
  1. 1.Cardiology Section, Department of MedicineUniversity of CaliforniaSan DiegoUSA
  2. 2.Veterans Administration Medical CenterSan DiegoUSA

Personalised recommendations