Skip to main content

Toward a Stress Analysis in the Heart

  • Chapter
Theory of Heart

Part of the book series: Institute for Nonlinear Science ((INLS))

Abstract

In this chapter, we briefly discuss the continuum mechanics approach to determining biomechanical constitutive relations and performing stress analyses, with particular emphasis on applications to the noncontracting heart. Examples taken from our own work illustrate possible avenues toward the eventual goal of estimating mechanical stresses in the heart and using this information to understand better certain aspects of cardiac mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.J. Atkin and N. Fox. An Introduction to the Theory of Elasticity. Longman Press, London, 1980.

    MATH  Google Scholar 

  2. R.M. Berne and M.N. Levy. Cardiovascular Physiology. The C.V. Mosby Co., St. Louis, MO, 1986.

    Google Scholar 

  3. T.K. Borg and J.B. Caulfield. Collagen in the heart. Tex. Rep. Biol Med., 39: 321–333, 1979.

    Google Scholar 

  4. P.H. Chew, F.C.P. Yin, and S.L. Zeger. Biaxial stress-strain properties of canine pericardium. J. Mol. Cell. Cardiol., 18: 567–578, 1986.

    Article  Google Scholar 

  5. L.L. Demer and F.C.P. Yin. Passive biaxial mechanical properties of isolated canine myocardium. J. Physiol. (London), 339: 615–630, 1983.

    Google Scholar 

  6. A.E. Green and J.E. Adkins. Large Elastic Deformations. Oxford University Press, Oxford, 1970.

    MATH  Google Scholar 

  7. H.R. Halperin, P.H. Chew, M.L. Weisfeldt, K. Sagawa, J.D. Humphrey, and F.C.P. Yin. Transverse stiffness: A method for estimation of myocardial wall stress. Circ. Res., 61: 695–703, 1987.

    Google Scholar 

  8. R.M. Huisman, P. Sipkema, N. Westerhof, and G. Elzinga. Comparison of models used to calculate left ventricular wall force. Med. Biol. Eng. Comput., 18: 133–144, 1980.

    Article  Google Scholar 

  9. J.D. Humphrey, H.R. Halperin, and F.C.P. Yin. Small indentation superimposed on a finite equibiaxial stretch: Implications to cardiac mechanics. ASME J. Appl. Mech., 1990. (submitted).

    Google Scholar 

  10. J.D. Humphrey, R.K. Strumpf, and F.C.P. Yin. Biaxial mechanical behavior of excised ventricular epicardium. Am. J. Physiol., 259: H101-H108, 1990.

    Google Scholar 

  11. J.D. Humphrey, R.K. Strumpf, and F.C.P. Yin. Determination of a constitutive relation for passive myocardium: II. Parameter identification. ASME J. Biomech. Eng., 112: 340–346, 1990.

    Article  Google Scholar 

  12. J.D. Humphrey, R.K. Strumpf, and F.C.P. Yin. Determination of a constitutive relation for passive myocardium: I. A new functional form. ASME J. Biomech. Eng., 112: 333–339, 1990.

    Article  Google Scholar 

  13. J.D. Humphrey and F.C.P. Yin. Biaxial mechanical behavior of excised epicardium. ASME J. Biomech. Eng., 110: 349–351, 1988.

    Article  Google Scholar 

  14. J.D. Humphrey and F.C.P. Yin. Biaxial mechanical properties of passive myocardium. In A. Yettram, editor, Material Properties and Stress Analysis in Biomechanics. Manchester University Press, Manchester, England, 1989.

    Google Scholar 

  15. J.D. Humphrey and F.C.P. Yin. Constitutive relations and finite deformations of passive cardiac tissue: II. Stress analysis in the left ventricle. Circ. Res., 65: 805–817, 1989.

    Google Scholar 

  16. P.J. Hunter and B.H. Smaill. The analysis of cardiac function: A continuum approach. Prog. Biophys. Mol. Biol., 52: 101–164, 1988.

    Article  Google Scholar 

  17. I. Mirsky. Assessment of passive elastic stiffness of cardiac muscle: Mathematical concepts, physiologic and clinical considerations, directions of future research. Prog. Cardiovasc. Dis., 18: 277–308, 1976.

    Article  Google Scholar 

  18. T. Moriarty. The law of Laplace: Its limitations as a relation for diastolic pressure, volume or wall stress of the left ventricle. Circ. Res., 46: 321–331, 1980.

    Google Scholar 

  19. J.H. Omens and Y.C. Fung. Residual stress in the left ventricle. In A.H. Erdman, editor, 1987 ASME Advances in Bioengineering. New York, 1987.

    Google Scholar 

  20. T.F. Robinson. The physiological relationship between connective tissue and contractile elements in heart muscle. Einstein Q., 1: 121–127, 1983.

    Google Scholar 

  21. K. Sagawa, L. Maughan, H. Suga, and K. Sunagawa. Cardiac Contraction and the Pressure-Volume Relationship. Oxford University Press, New York, 1988.

    Google Scholar 

  22. D.D. Streeter. Handbook of Physiology, Volume 1. American Physiological Society, Bethesda, MD, 1979. Section 2.

    Google Scholar 

  23. C. Truesdell and W. Noll. The nonlinear field theories of mechanics. In S. Flugge, editor, Handbuch der Physik, Volume III, Springer-Verlag, Berlin, 1965.

    Google Scholar 

  24. L.K. Waldman, Y.C. Fung, and J.W. Covell. Transmural myocardial deformation in the canine left ventricle. Circ. Res., 57: 152–163, 1985.

    Google Scholar 

  25. R.H. Woods. A few applications of a physical theorem to membranes in the human body in the state of tension. J. Anai. Physiol., 26: 262–270, 1892.

    Google Scholar 

  26. F.C.P. Yin. Applications of the finite-element method to ventricular mechanics. CRC Crit. Rev. Biomed. Eng., 12: 311–342, 1985.

    Google Scholar 

  27. F.C.P. Yin. Ventricular wall stress. Circ. Res., 49: 829–842, 1981.

    Google Scholar 

  28. F.C.P. Yin, P.H. Chew, and S.L. Zeger. An approach to quantification of biaxial tissue stress-strain data. J. Biomech., 19: 27–37, 1986.

    Article  Google Scholar 

  29. F.C.P. Yin, R.K. Strumpf, P.H. Chew, and S.L. Zeger. Quantification of the mechanical properties of noncontracting canine myocardium under simultaneous biaxial loading. J. Biomech., 20: 577–589, 1987.

    Article  Google Scholar 

  30. O.C. Zienkiewicz. The Finite Element Method. McGraw Hill, New York, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Humphrey, J., Strumpf, R., Halperin, H., Yin, F. (1991). Toward a Stress Analysis in the Heart. In: Glass, L., Hunter, P., McCulloch, A. (eds) Theory of Heart. Institute for Nonlinear Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3118-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3118-9_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7803-0

  • Online ISBN: 978-1-4612-3118-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics