Toward a Stress Analysis in the Heart

  • Jay Humphrey
  • Robert Strumpf
  • Henry Halperin
  • Frank Yin
Part of the Institute for Nonlinear Science book series (INLS)


In this chapter, we briefly discuss the continuum mechanics approach to determining biomechanical constitutive relations and performing stress analyses, with particular emphasis on applications to the noncontracting heart. Examples taken from our own work illustrate possible avenues toward the eventual goal of estimating mechanical stresses in the heart and using this information to understand better certain aspects of cardiac mechanics.


Constitutive Relation Cardiac Tissue Stretch Ratio Biaxial Test Heart Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R.J. Atkin and N. Fox. An Introduction to the Theory of Elasticity. Longman Press, London, 1980.MATHGoogle Scholar
  2. [2]
    R.M. Berne and M.N. Levy. Cardiovascular Physiology. The C.V. Mosby Co., St. Louis, MO, 1986.Google Scholar
  3. [3]
    T.K. Borg and J.B. Caulfield. Collagen in the heart. Tex. Rep. Biol Med., 39: 321–333, 1979.Google Scholar
  4. [4]
    P.H. Chew, F.C.P. Yin, and S.L. Zeger. Biaxial stress-strain properties of canine pericardium. J. Mol. Cell. Cardiol., 18: 567–578, 1986.CrossRefGoogle Scholar
  5. [5]
    L.L. Demer and F.C.P. Yin. Passive biaxial mechanical properties of isolated canine myocardium. J. Physiol. (London), 339: 615–630, 1983.Google Scholar
  6. [6]
    A.E. Green and J.E. Adkins. Large Elastic Deformations. Oxford University Press, Oxford, 1970.MATHGoogle Scholar
  7. [7]
    H.R. Halperin, P.H. Chew, M.L. Weisfeldt, K. Sagawa, J.D. Humphrey, and F.C.P. Yin. Transverse stiffness: A method for estimation of myocardial wall stress. Circ. Res., 61: 695–703, 1987.Google Scholar
  8. [8]
    R.M. Huisman, P. Sipkema, N. Westerhof, and G. Elzinga. Comparison of models used to calculate left ventricular wall force. Med. Biol. Eng. Comput., 18: 133–144, 1980.CrossRefGoogle Scholar
  9. [9]
    J.D. Humphrey, H.R. Halperin, and F.C.P. Yin. Small indentation superimposed on a finite equibiaxial stretch: Implications to cardiac mechanics. ASME J. Appl. Mech., 1990. (submitted).Google Scholar
  10. [10]
    J.D. Humphrey, R.K. Strumpf, and F.C.P. Yin. Biaxial mechanical behavior of excised ventricular epicardium. Am. J. Physiol., 259: H101-H108, 1990.Google Scholar
  11. [11]
    J.D. Humphrey, R.K. Strumpf, and F.C.P. Yin. Determination of a constitutive relation for passive myocardium: II. Parameter identification. ASME J. Biomech. Eng., 112: 340–346, 1990.CrossRefGoogle Scholar
  12. [12]
    J.D. Humphrey, R.K. Strumpf, and F.C.P. Yin. Determination of a constitutive relation for passive myocardium: I. A new functional form. ASME J. Biomech. Eng., 112: 333–339, 1990.CrossRefGoogle Scholar
  13. [13]
    J.D. Humphrey and F.C.P. Yin. Biaxial mechanical behavior of excised epicardium. ASME J. Biomech. Eng., 110: 349–351, 1988.CrossRefGoogle Scholar
  14. [14]
    J.D. Humphrey and F.C.P. Yin. Biaxial mechanical properties of passive myocardium. In A. Yettram, editor, Material Properties and Stress Analysis in Biomechanics. Manchester University Press, Manchester, England, 1989.Google Scholar
  15. [15]
    J.D. Humphrey and F.C.P. Yin. Constitutive relations and finite deformations of passive cardiac tissue: II. Stress analysis in the left ventricle. Circ. Res., 65: 805–817, 1989.Google Scholar
  16. [16]
    P.J. Hunter and B.H. Smaill. The analysis of cardiac function: A continuum approach. Prog. Biophys. Mol. Biol., 52: 101–164, 1988.CrossRefGoogle Scholar
  17. [17]
    I. Mirsky. Assessment of passive elastic stiffness of cardiac muscle: Mathematical concepts, physiologic and clinical considerations, directions of future research. Prog. Cardiovasc. Dis., 18: 277–308, 1976.CrossRefGoogle Scholar
  18. [18]
    T. Moriarty. The law of Laplace: Its limitations as a relation for diastolic pressure, volume or wall stress of the left ventricle. Circ. Res., 46: 321–331, 1980.Google Scholar
  19. [19]
    J.H. Omens and Y.C. Fung. Residual stress in the left ventricle. In A.H. Erdman, editor, 1987 ASME Advances in Bioengineering. New York, 1987.Google Scholar
  20. [20]
    T.F. Robinson. The physiological relationship between connective tissue and contractile elements in heart muscle. Einstein Q., 1: 121–127, 1983.Google Scholar
  21. [21]
    K. Sagawa, L. Maughan, H. Suga, and K. Sunagawa. Cardiac Contraction and the Pressure-Volume Relationship. Oxford University Press, New York, 1988.Google Scholar
  22. [22]
    D.D. Streeter. Handbook of Physiology, Volume 1. American Physiological Society, Bethesda, MD, 1979. Section 2.Google Scholar
  23. [23]
    C. Truesdell and W. Noll. The nonlinear field theories of mechanics. In S. Flugge, editor, Handbuch der Physik, Volume III, Springer-Verlag, Berlin, 1965.Google Scholar
  24. [24]
    L.K. Waldman, Y.C. Fung, and J.W. Covell. Transmural myocardial deformation in the canine left ventricle. Circ. Res., 57: 152–163, 1985.Google Scholar
  25. [25]
    R.H. Woods. A few applications of a physical theorem to membranes in the human body in the state of tension. J. Anai. Physiol., 26: 262–270, 1892.Google Scholar
  26. [26]
    F.C.P. Yin. Applications of the finite-element method to ventricular mechanics. CRC Crit. Rev. Biomed. Eng., 12: 311–342, 1985.Google Scholar
  27. [27]
    F.C.P. Yin. Ventricular wall stress. Circ. Res., 49: 829–842, 1981.Google Scholar
  28. [28]
    F.C.P. Yin, P.H. Chew, and S.L. Zeger. An approach to quantification of biaxial tissue stress-strain data. J. Biomech., 19: 27–37, 1986.CrossRefGoogle Scholar
  29. [29]
    F.C.P. Yin, R.K. Strumpf, P.H. Chew, and S.L. Zeger. Quantification of the mechanical properties of noncontracting canine myocardium under simultaneous biaxial loading. J. Biomech., 20: 577–589, 1987.CrossRefGoogle Scholar
  30. [30]
    O.C. Zienkiewicz. The Finite Element Method. McGraw Hill, New York, 1979.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1991

Authors and Affiliations

  • Jay Humphrey
    • 1
  • Robert Strumpf
    • 2
  • Henry Halperin
    • 2
  • Frank Yin
    • 3
  1. 1.Department of Mechanical EngineeringUniversity of MarylandBaltimoreUSA
  2. 2.Department of Medicine, Cardiology DivisionThe Johns Hopkins Medical InstitutionsBaltimoreUSA
  3. 3.Departments of Medicine and Biomedical EngineeringThe Johns Hopkins Medical InstitutionsBaltimoreUSA

Personalised recommendations