Skip to main content

Wave Propagation in Myocardium

  • Chapter
Book cover Theory of Heart

Part of the book series: Institute for Nonlinear Science ((INLS))

Abstract

I present an overview of cable theory for propagation in onedimensional excitable cables and some modifications necessary to account for the discrete cellular nature of myocardial cells and gap junctions. The modified cable theory is shown to agree quite well with a number of recent experiments on propagation in anisotropic tissue that are unexplained by the classical continuous theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.G. Aronson and H.F. Weinberger. Nonlinear diffusion in population genetics, combustion and nerve pulse propagation. In J.A. Goldstein, editor, Proceedings of the Tulane Program on Partial Differential Equations and Related Topics, pages 5–49, Springer-Verlag, Berlin, 1975.

    Chapter  Google Scholar 

  2. C.W. Balke, M.D. Lesh, J.F. Spear, A. Kadish, J.H. Levine, and E.N. Moore. Effects of cellular uncoupling on conduction in anisotropic canine ventricular myocardium. Circ. Res., 63: 879–892, 1988.

    Google Scholar 

  3. G.W. Beeler and H. Reuter. Reconstruction of the action potential of myocardial fibres. J. Physiol. (Lond.), 268: 177–210, 1977.

    Google Scholar 

  4. L. Clerc. Directional differences of impulse spread in trabecular muscle from mammalian heart. J. Physiol (Lond.), 255: 335–346, 1976.

    Google Scholar 

  5. W.C. Cole, J.B. Picone, and N. Sperelakis. Gap junction uncoupling and discontinuous propagation in the heart. Biophys. J., 53: 809–818, 1988.

    Article  Google Scholar 

  6. C. Delgado, B. Steinhaus, M. Delmar, D.R. Chialvo, and J. Jalife. Directional differences in excitability and margin of safety for propagation in sheep ventricular epicardial muscle. Circ. Res., 67: 97–110, 1990.

    Google Scholar 

  7. M. Delmar, D.C. Michaels, T. Johnson, and J. Jalife. Effects of increasing intercellular resistance on transverse and longitudinal propagation in sheep epicardial muscle. Circ. Res., 60: 780–785, 1987.

    Google Scholar 

  8. P.J. Diaz, Y. Rudy, and R. Plonsey. Intercalated discs as a cause for discontinuous propagation in cardiac muscle: A theoretical simulation. Ann. Biomed. Eng., 11: 177–189, 1983.

    Article  Google Scholar 

  9. D. DiFrancesco and D. Noble. A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Phil. Trans. Roy. Soc. Lond. B., 222: 353–398, 1985.

    Article  ADS  Google Scholar 

  10. J.-P. Drouhard and F.A. Roberge. Revised formulation of the Hodgkin-Huxley representation of the sodium current in cardiac cells. Comp. Biomed. Res., 20: 333–350, 1987.

    Article  Google Scholar 

  11. L. Ebihara and E.A. Johnson. Fast sodium current in cardiac muscle, a quantitative description. Biophys. J., 32: 779–790, 1980.

    Article  Google Scholar 

  12. P.C. Fife. Mathematical Aspects of Reacting and Diffusing Systems. Lecture Notes in Biomathematics, vol. 28, Springer-Verlag, Berlin, 1979.

    Google Scholar 

  13. A.L. Hodgkin and A.F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 177: 500–544, 1952.

    Google Scholar 

  14. R.H. Hoyt, M.L. Cohen, and J.E. Saffitz. Distribution and three-dimensional structure of intercellular junctions in canine myocardium. Circ. Res., 64(3): 563–574, 1989.

    Google Scholar 

  15. J.R. Hume and W. Giles. Active and passive electrical properties of single atrial cells. J. Gen. Physiol, 78: 19–42, 1981.

    Article  Google Scholar 

  16. P.F. Hunter, P.A. McNaughton, and D. Noble. Analytical models of propagation in excitable cells. Progr. Biophys. Mol. Biol., 30: 99–144, 1975.

    Article  Google Scholar 

  17. R.W. Joyner. Effects of the discrete pattern of electrical coupling on propagation through an electrical syncytium. Circ. Res., 50: 192–200, 1982.

    Google Scholar 

  18. M. Kawato, A. Yamanaka, S. Urushiba, O. Nagata, H. Irisawa, and R. Suzuki. Simulation analysis of excitation conduction in the heart: Propagation of excitation in different tissues. J. Theor. Biol., 120: 389–409, 1986.

    Article  Google Scholar 

  19. J.P. Keener. On the formation of circulating patterns of excitation in anisotropic excitable media. J. Math. Biol., 26: 41–56, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  20. J.P. Keener. Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math., 47: 556–572, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  21. J.M. Kootsey and J. Wu. Anisotropic 2-D model of electrical propagation in cardiac muscle. IEEE/EMBS: 1988.

    Google Scholar 

  22. R.E. McAllister, D. Noble, and R.W. Tsien. Reconstruction of the electrical activity of cardiac Purkinje fibers. J. Physiol., 251: 1–59, 1975.

    Google Scholar 

  23. M.H. Protter and H.F. Weinberger. Maximum Principles in Differential Equations. Prentice-Hall, Englewood Cliffs, N.J., 1967.

    Google Scholar 

  24. F.A. Roberge, A. Vinet, and B. Victorri. Reconstruction of propagated electrical activity with a two-dimensional model of anisotropic heart muscle. Circ. Res., 58: 461–475, 1986.

    Google Scholar 

  25. Y. Rudy and W.-L. Quan. A model study of the effects of the discrete cellular structure on electrical propagation on cardiac tissue. Circ. Res., 61: 815–823, 1987.

    Google Scholar 

  26. M.S. Spach and J.M. Kootsey. The nature of electrical propagation in cardiac muscle. Am. J. Physiol., 244: H3-H22, 1983.

    Google Scholar 

  27. M.S. Spach, W.T. Miller, D.B. Geselowitz, R.C. Barr, J.M. Kootsey, and E.A. Johnson. The discontinuous nature of propagation in normal canine cardiac muscle. Circ. Res., 48: 39–54, 1981.

    Google Scholar 

  28. M.S. Spach and P.C. Dolber. Relating extracellular potentials and their derivatives to anisotropic propagation at the microscopic level in human cardiac muscle: Evidence for uncoupling of side-side fiber connections with increasing age. Circ. Res., 58: 356–371, 1986.

    Google Scholar 

  29. S. Wiedmann. Electrical constants of trabecular muscle on mammalian heart. J. Physiol. (Lond.), 118: 348–360, 1970.

    Google Scholar 

  30. A.L. Wit, S. Dillon, and P.C. Ursell. Influences of anisotropic tissue structure on reentrant ventricular tachycardia. In P. Brugada and H.J. Wellens, editors, Cardiac Arrhythmias: Where to go from here?, pages 27–37, Futura Publishing Co, Mount Kisco, NY, 1987.

    Google Scholar 

  31. J.W. Woodbury and W.E. Crill. The potential in the gap between two abutting cardiac cells. Biophys. J., 10: 1076–1085, 1970.

    Article  Google Scholar 

  32. K. Yanagihara, A. Noma, and H. Irisawa. Reconstruction of sinoatrial node pacemaker potential based on the voltage clamp experiments. Jap. J. Physiol., 30: 841–857, 1980.

    Article  Google Scholar 

  33. B. Zinner. Traveling Wavefront Solutions for the Discrete Nagumo Equation. Ph.D. thesis, University of Utah, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Keener, J.P. (1991). Wave Propagation in Myocardium. In: Glass, L., Hunter, P., McCulloch, A. (eds) Theory of Heart. Institute for Nonlinear Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3118-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3118-9_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7803-0

  • Online ISBN: 978-1-4612-3118-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics