Mathematical Modeling of the Electrical Activity of Cardiac Cells

  • Michael R. Guevara
Part of the Institute for Nonlinear Science book series (INLS)


We introduce the Hodgkin-Huxley (HH) formulation describing the flow of ionic currents across the membrane of a cardiac cell, paying particular attention to the central concepts of activation and inactivation. We indicate a few situations in which HH-type modeling of cardiac cells has been useful, and show that continuous models of the HH-type break down when one observes phenomena in which single-channel behavior becomes important. Finally, we show that there are some intriguing parallels between the behavior of single ionic channels, which are currently thought to be governed by stochastic processes, and the behavior of chaotic systems, which are governed not by stochastic, but rather by deterministic rules.


Chaotic System Cardiac Cell Sinoatrial Node Ionic Model Ventricular Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F.T. Arrechi and A. Califano. Noise-induced trapping at the boundary between two attractors: A source of 1/f spectrum and nonlinear dynamics. Europhys. Lett., 3, 5–10, 1987.ADSCrossRefGoogle Scholar
  2. [2]
    G.W. Beeler and H. Reuter. Reconstruction of the action potential of ventricular myocardial fibres. J. Physiol (Lond.), 268: 177–210, 1977.Google Scholar
  3. [3]
    W.K. Bleeker, A.J.C. Mackaay, M. Masson-Pévet, L.N. Bouman, and A.E. Becker. Functional and morphological organization of the rabbit sinus node. Circ. Res., 46: 11–22, 1980.Google Scholar
  4. [4]
    A. Cavalié, D. Pelzer, and W. Trautwein. Fast and slow gating behaviour of single calcium channels in cardiac cells. Pflüg. Arch., 406: 241–258, 1986.CrossRefGoogle Scholar
  5. [5]
    D.R. Chialvo and J. Jalife. Non-linear dynamics of cardiac excitation and impulse propagation. Nature, 330: 749–752, 1988.ADSCrossRefGoogle Scholar
  6. [6]
    J.R. Clay and L.J. DeFelice. The relationship between membrane excitability and single channel open-close kinetics. Biophys. J., 42: 151–157, 1983.CrossRefGoogle Scholar
  7. [7]
    D. Colquhoun and A.G. Hawkes. The principles of the stochastic interpretation of ion channel mechanisms. In B. Sakmann and E. Neher, editors, Single-Channel Recording, pages 135–175. Plenum, New York, 1983.Google Scholar
  8. [8]
    F. Conti. Noise analysis and single-channel recordings. Curr. Top. Memb. Transport, 22: 371–405, 1984.Google Scholar
  9. [9]
    D. DiFrancesco and D. Noble. A model of electrical activity incorporating ionic pumps and concentration changes. Phil. Trans. Roy. Soc. Lond., B 307: 353–398, 1985.ADSCrossRefGoogle Scholar
  10. [10]
    M. Feingold, D.L. Gonzalez, O. Piro, and H. Viturro. Phase locking, period doubling, and chaotic phenomena in externally driven excitable systems. Physical Rev., A 37: 4060–4063, 1988.ADSGoogle Scholar
  11. [11]
    R. Fischmeister and G. Vassort. The electrogenic Na-Ca exchange and the cardiac electrical activity. I-Simulation of Purkinje fiber action potentials. J. Physiol. (Paris), 77: 705–709, 1981.Google Scholar
  12. [12]
    R. FitzHugh. Impulses and physiological states in theoretical models of nerve membrane. Biophys J., 1: 445–466, 1961.ADSCrossRefGoogle Scholar
  13. [13]
    R. FitzHugh. Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophys., 17: 257–278, 1955.CrossRefGoogle Scholar
  14. [14]
    C. Grebogi, E. Ott, F. Romieras, and J.A. Yorke. Critical exponents for crisis-induced intermittency. Physical Rev., 36A: 5365–5380, 1987.ADSGoogle Scholar
  15. [15]
    M.R. Guevara. Chaotic Cardiac Dynamics. Ph.D. thesis, McGill University, Montreal, Quebec, 1984.Google Scholar
  16. [16]
    M.R. Guevara. Spatiotemporal patterns of block in an ionic model of cardiac Purkinje fibre, In M. Markus, S.C. Müller, and G. Niclois, editors, From Chemical to Biological Organization, pages 273–281. Springer, Berlin, 1988.Google Scholar
  17. [17]
    M.R. Guevara. Afterpotentials and pacemaker oscillations in an ionic model of cardiac Purkinje fibres, L. Rensing, U. an der Heiden and M.C. Mackey, editors, Temporal Disorder in Human Oscillatory Systems, pages 126–133. Springer, Berlin, 1987.Google Scholar
  18. [18]
    M.R. Guevara, F. Alonso, D. Jeandupeux, and A.C.G. van Ginneken. Alternans in periodically stimulated isolated ventricular myocytes: Experiment and model, In A. Goldbeter, editor, Cell-to-Cell Signalling: From Experiments to Theoretical Models, pages 551–563. Academic Press, London, 1989.Google Scholar
  19. [19]
    M.R. Guevara, L. Glass, M.C. Mackey, and S. Shrier. Chaos in neurobiology. IEEE Trans. Syst. Man. Cybern., SMC-13: 790–798, 1983.MATHGoogle Scholar
  20. [20]
    M.R. Guevara, L. Glass, and A. Shrier. Phase locking, period doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. Science, 214: 1350–1353, 1981.ADSCrossRefGoogle Scholar
  21. [21]
    M.R. Guevara, D. Jeandupeux, F. Alonso, and N. Morissette. Wenckebach rhythms in isolated ventricular heart cells, In St. Pnevmatikos, T. Bountis and Sp. Pnevmatikos, editors, Singular Behaviour and Nonlinear Dynamics, pages 629–642. World Scientific, Singapore, 1989.Google Scholar
  22. [22]
    M.R. Guevara and A. Shrier. Phase resetting in a model of cardiac Purkinje fibre. Biophys. J., 52: 165–175, 1987.ADSCrossRefGoogle Scholar
  23. [23]
    M.R. Guevara, A. Shrier, and L. Glass. Phase resetting of spontaneously beating embryonic ventricular heart cell aggregates. Am. J. Physiol., 251: H1298-H1305, 1986.Google Scholar
  24. [24]
    M.R. Guevara, A.C.G. van Ginneken, and H.J. Jongsma. Patterns of activity in a reduced ionic model of a cell from the rabbit sinoatrial node, In H. Degn, A.V. Holden and L.F. Olsen, editors, Chaos in Biological Systems, pages 5–12. Plenum, London, 1987.Google Scholar
  25. [25]
    D.W. Hilgemann and D. Noble. Excitation-contraction coupling and extracellular calcium transients in rabbit atrium: Reconstruction of basic cellular mechanisms. Proc. Roy. Soc. Lond., B 230: 163–205, 1987.ADSCrossRefGoogle Scholar
  26. [26]
    B. Hille. Ionic Channels of Excitable Membranes. Sinauer, Sunderland, 1984.Google Scholar
  27. [27]
    A.L. Hodgkin and A.F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.), 117: 500–544, 1952.Google Scholar
  28. [28]
    P. Holmes. “Strange” phenomena in dynamical systems and their physical implications. Appl. Math. Modelling, 1: 362–366, 1977.MATHCrossRefGoogle Scholar
  29. [29]
    R. Horn and S.J. Korn. Graphical discrimination of Markov and fractal models of single channel gating. Comments Theor. Biol., 1: 39–46, 1988.Google Scholar
  30. [30]
    H. Irisawa and A. Noma. Pacemaker mechanisms of rabbit sinoatrial node cells, In L.N. Bouman and H.J. Jongsma, editors, Cardiac Rate and Rhythm, pages 35–51. Nijhoff, Amsterdam, 1982.Google Scholar
  31. [31]
    H. Ishii, H. Fujisawa, and M. Inoue. Breakdown of chaos symmetry and intermittency in the double-well potential system. Phys. Lett., 116A: 257–263, 1986.ADSGoogle Scholar
  32. [32]
    J.H. Jensen, P.L. Christiansen, and A.C. Scott. Chaos in the Beeler-Reuter system for the action potential of ventricular myocardial fibers. Physica, 13D: 269–277, 1984.MathSciNetADSGoogle Scholar
  33. [33]
    R.W. Joyner and F.J.L. van Capelle. Propagation through electrically coupled cells: How a small SA node drives a large atrium. Biophys. J., 50: 1157–1164, 1986.ADSCrossRefGoogle Scholar
  34. [34]
    R.W. Joyner, R. Veenstra, D. Rawling, and A. Chorro. Propagation through electrically coupled cells: Effects of a resistive barrier. Biophys. J., 45: 1017–1025, 1984.CrossRefGoogle Scholar
  35. [35]
    J.P. Keener. A mathematical model for the initiation of ventricular tachycardia in myocardium, In A. Goldbeter, editor, Cell to Cell Signalling: From Experiments to Theoretical Models, pages 589–608. Academic Press, London, 1989.Google Scholar
  36. [36]
    L.S. Liebovitch and J.M. Sullivan. Fractal analysis of a voltage-dependent potassium channel from cultured mouse hippocampal neurons. Biophys. J., 52: 979–988, 1987.CrossRefGoogle Scholar
  37. [37]
    L.S. Liebovitch and T.I. Tóth. Fractal activity in cell membrane ion channels. Ann. NY Acad. Sci., 591: 375–391, 1990.ADSCrossRefGoogle Scholar
  38. [38]
    P. Manneville. Intermittency, self-similarity and 1/f spectrum in dissipative dynamical systems. J. Phys.(Paris), 41: 1235–1243, 1980.MathSciNetCrossRefGoogle Scholar
  39. [39]
    M.A. Masson-Pévet, W.K. Bleeker, E. Besselsen, B.W. Treytel, H.J. Jongsma, and L.N. Bouman. Pacemaker cell types in the rabbit sinus node: A correlative ultrastructural and electrophysiological study. J. Molec. Cell. Cardiol, 16: 53–63, 1984.CrossRefGoogle Scholar
  40. [40]
    R.E. McAllister, D. Noble, and R.W. Tsien. Reconstruction of the electrical activity of cardiac Purkinje fibres. J. Physiol. (Lond.), 251: 1–59, 1975.Google Scholar
  41. [41]
    D.C. Michaels, E.P. Matyas, and J. Jalife. A mathematical model of the effects of acetylcholine pulses on sinoatrial pacemaker activity. Circ. Res., 55: 89–101, 1984.Google Scholar
  42. [42]
    D.C. Michaels, E.P. Matyas, and J. Jalife. Mechanisms of sinoatrial pacemaker synchronization: A new hypothesis. Circ. Res., 61: 704–714, 1987.Google Scholar
  43. [43]
    T. Musha, H. Takeuchi, and T. Inoue. 1/f fluctuations in the spontaneous intervals of a giant snail neuron. IEEE Trans. Biomed. Eng., BME-30: 194–197, 1983.CrossRefGoogle Scholar
  44. [44]
    R.A. Nadeau, F.A. Roberge, and P. Bhéreur. The mechanism of the Wenckebach phenomenon. Isr. J. Med. Sci., 5: 814–818, 1969.Google Scholar
  45. [45]
    D. Noble. A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pace-maker potentials. J. Physiol. (Lond.), 160: 317–352, 1962.Google Scholar
  46. [46]
    D. Noble and S.J. Noble. A model of the sino-atrial node electrical acitivity based on a modification of the DiFrancesco-Noble (1984) equations. Proc. Roy. Soc. Lond., B 222: 295–304, 1984.ADSCrossRefGoogle Scholar
  47. [47]
    H. Othmer. The dynamics of forced excitable systems. In A.V. Holden, M. Markus, H. Othmer, editors, Nonlinear Wave Processes in Excitable Media, Plenum, London, 1990.Google Scholar
  48. [48]
    A.V. Panfilov and A.N. Rudenko. Two regimes of the scroll ring drift in the three-dimensional active media. Physica, 28D: 215–218, 1987.MathSciNetADSGoogle Scholar
  49. [49]
    A.A. Petrov and B.N. F’eld. Analysis of the possible mechanism of origin of the extrasystole in local ischaemia of the myocardium using a mathematical model. Biophysics, 18: 1145–1150, 1973.Google Scholar
  50. [50]
    T. Post, H.W. Capel, and J.P. van de Weele. New results in intermittent switching, In St. Pnevmatikos, T. Bountis, Sp. Pnevmatikos, editors, Singular Behaviour and Nonlinear Dynamics, pages 195–200. World Scientific, Singapore, 1989.Google Scholar
  51. [51]
    I. Proccacia and H. Schuster. Functional renormalization group theory of universal 1/f noise in dynamical systems. Physical Rev., 28A: 1210–1212, 1983.ADSGoogle Scholar
  52. [52]
    O.E. Rössler, R. Rössler, and H.D. Landahl. Arrhythmia in a periodically forced excitable system (abstract). In Proc. Sixth Int. Biophys. Congress, Kyoto, 1978.Google Scholar
  53. [53]
    P. Selepova. Single Ion Channel Dynamics. Master’s thesis, McGill University, Montreal, Quebec, 1986.Google Scholar
  54. [54]
    A.I. Shcherbunov, N.I. Kukushkin, and M.Y. Sakson. Reverberator in a system of interrelated fibers described by the Noble equation. Biophysics, 18: 547–554, 1973.Google Scholar
  55. [55]
    A. Shrier, H. Dubarsky, M. Rosengarten, M.R. Guevara, S. Nattel, and L. Glass. Prediction of complex atrioventricular conduction rhythms in human beings with use of the atrioventricular nodal recovery curve. Circulation, 76: 1196–1205, 1987.CrossRefGoogle Scholar
  56. [56]
    E. Skaugen. Firing behaviour in stochastic nerve membrane models with different pore densities. Acta. Physiol. Scand., 108: 49–60, 1980.CrossRefGoogle Scholar
  57. [57]
    J.M.T. Thompson and H.B. Stewart. Nonlinear Dynamics and Chaos. Wiley, Chichester, 1986.MATHGoogle Scholar
  58. [58]
    F.J.L. van Capelle and D. Durrer. Computer simulation of arrythmias in a network of coupled excitable elements. Circ. Res., 47: 454–466, 1980.Google Scholar
  59. [59]
    B. van der Pol and J. van der Mark. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. Phil. Mag. (Series 7), 6: 763–775, 1928.Google Scholar
  60. [60]
    T. Watanabe, P.M. Rautaharju, and T.F. McDonald. Ventricular action potentials, ventricular extracellular potentials, and the ECG of guinea pig. Circ. Res., 57: 362–373, 1985.Google Scholar
  61. [61]
    A.T. Winfree. Electrical instability in cardiac muscle: phase singularities and rotors. J. Theor. Biol., 138: 353–405, 1989.MathSciNetCrossRefGoogle Scholar
  62. [62]
    J.A. Yorke and E.D. Yorke. Metastable chaos: The transition to sustained chaotic behaviour in the Lorenz model. J. Stat. Phys., 21: 263–277, 1979.MathSciNetADSCrossRefGoogle Scholar
  63. [63]
    V.S. Zykov. Simulation of Wave Processes in Excitable Media. Manchester University Press, Manchester, 1987.MATHGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1991

Authors and Affiliations

  • Michael R. Guevara
    • 1
  1. 1.Department of PhysiologyMcGill UniversityMontréalCanada

Personalised recommendations