Advertisement

Mathematical Analysis of the Geodetic Space—Stabilized INS

  • Bernd Eissfeller
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 107)

Abstract

The topic of this paper is the analysis of the space-stabilized geodetic INS Honeywell GEO-SPIN II and its integration with GPS in a Kalman filter. The basic concept of analysis is a rigorous physical description of the inertial sensors and the platform.The analysis results in error models of the ESG gyros, of the platform servo-loops and the fluid-filled pendulous accelerometers. The anomalous gravity field is modeled by a five state shaping-filter based on a 2nd order Gauss-Marcov process for the disturbing potential. In comparison to the existing error rgodel of the GEO-SPIN II a large cross-coupling term and a g2-drift of the gyros are introduced. The platform servo-loop errors consider a mass unbalance of the inner element, friction of the bearings, and the damping of the motors. The error model of the accelerometers is extended by a scalefactor asymmetry, a cubic scalefactor error and a cross-coupling term. After introducing the main system errors, the navigational errors and the GPS-biases a 31 states Kalman filter is derived.

Keywords

Error Model Inertial Navigation System Gravity Disturbance Disturbing Potential Scale Factor Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, G. and Hadfield, M. (1981). GEO-SPIN/IPS-2 Improve-for Precision Gravity Measurement, Proc. of the 2nd Int. Symposium on Inertial Technology for Surveying and Geodesy, Banff, Canada.Google Scholar
  2. Boedecker, G. (1987). Zur Ausgleichung von Inertialdaten, Zeitschrift für Vermessungswesen, Vol. 112, No. 1.Google Scholar
  3. Britting, K. (1971). Inertial Navigation Systems Analysis, Wiley-Interscience, New-York.Google Scholar
  4. Broxmeyer, C. (1964). Inertial Navigation Systems, Mc GrawHill, New-York.Google Scholar
  5. Eissfeller, B. (1989). Analyse einer raumstabilisierten Inertialplattform und Integration mit GPS, Schriftenreihe Studiengang Vermessungswesen, Universität der Bundeswehr, Heft 37, Neubiberg.Google Scholar
  6. Fernandez, M. and Macomber, G. (1962). Inertial Guidance Engineering, Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  7. Jordan, S., Moonan, P., Weiss, J. (1981). State Space Models of Gravity Disturbance Gradients, IEEE, Vol. AES-17, No. 5.Google Scholar
  8. Koenig, R. (1988). Zur Fehlertheorie und Ausgleichung inertialer Positionsbestimmungen, Schriftenreihe Studiengang Vermessungswesen, Universität der Bundeswehr, Heft 32, Neubiberg.Google Scholar
  9. Moritz, H. (1980). Advanced Physical Geodesy, Wichmann Verlag, Karlsruhe.Google Scholar
  10. Phelps, P. (1968). Research in Electrically Supported Vacuum Gyroscope, Vol. I: Summary, Honeywell Inc., Minneapolis.Google Scholar
  11. Savage, P. (1978). Strapdown Sensors, AGARD Lecture Series No. 95.Google Scholar
  12. Vassiliou, A.A. and Schwarz, K.P. (1987). Study of the High-Frequency Spectrum of the Anomalous Gravity Potential, Vol. 92, No. Bi.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1991

Authors and Affiliations

  • Bernd Eissfeller
    • 1
  1. 1.Kayser-Threde GmbHMünchen 70Germany

Personalised recommendations