Advertisement

Computer Programs for High-Current Beam Transport in Accelerators

  • Brendan B. Godfrey
Conference paper

Abstract

Numerical techniques exist for modeling particle beam dynamics in high current accelerators at several levels of fidelity. Equilibria can be determined with beam envelope codes, particle ray-tracing, Vlasov equilibrium solvers, and single-disk particle codes. The linear stability of these equilibria is addressed with dispersion relations solved numerically, linearized PIC codes, and single- and multi-component beam centroid programs. Beam nonlinear dynamics are investigated with multidimensional PIC codes employing either the complete electromagnetic field equations or various approximations to them. Each of these options is discussed, and several examples are provided.

Keywords

Drift Tube Sandia National Laboratory Lawrence Livermore National Laboratory Instability Growth Rate Magnetic Guide Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. M. McMillian, ed., “Electron Ring Accelerators, ” UCRL-18103 (Lawrence Berkeley Laboratory, Berkeley, 1968).Google Scholar
  2. 2.
    D. W. Kerst, Phys. Rev. 60, 47 (1941).CrossRefGoogle Scholar
  3. 3.
    D. W. Kerst and R. Serber, Phys. Rev. 60, 53 (1941).CrossRefGoogle Scholar
  4. 4.
    N. Rostoker, M. Reiser (ed.), Collective Methods of Acceleration (Harwood Academic Press, New York, 1979).Google Scholar
  5. 5.
    C. L. Olson, U. Schumacher, Collective Ion Acceleration (Springer, New York, 1979).Google Scholar
  6. 6.
    P. A. Channell, Laser Acceleration of Particles (American Institute of Physics, New York, 1982).Google Scholar
  7. 7.
    H. Hora, G. H. Miley (ed.), Laser Interaction and Related Plasma Phenomena, Vol. 6 (Plenum, New York, 1984), Sec. Vffl.Google Scholar
  8. 8.
    T. Katsouleas (ed.), IEEE Trans. Pias. Sei. PS-15, 88–237 (1987).Google Scholar
  9. 9.
    A. I. Pavlovskiy V. S. Bosamykin, V. A. Savchenko, A. P. Klement’ev, K. A. Morunov, V. S. Nikol’skii, A. I. Gerasimov, V. A. Tananakin, V. F. Basmanov, D. I. Zenkov, V. D. Selemir, A. S. Fedotkin, Dokl. Akad. Nauk SSSR 250, 1118 (1980) [Sov. Phys. Dokl. 25, 120 (1980)].Google Scholar
  10. 10.
    D. S. Prono, IEEE Trans. Nuc. Sei. NS-32, 3144 (1985).Google Scholar
  11. 11.
    R. B. Miller, IEEE Trans. Nuc. Sei. NS-32, 3149 (1985).Google Scholar
  12. 12.
    R. B. Miller, J. W. Poukey, B. G. Epstein, S. L. Shope, T. C. Genoni, M. Franz, B. B. Godfrey, R. J. Adler, A. Mondelli, IEEE Trans. Nuc. Sei. NS-28, 3343 (1981).Google Scholar
  13. 13.
    R. Adler, M. Campbell, B. Godfrey, D. Sullivan, T. Genoni, Part. Accel. 13, 25 (1983).Google Scholar
  14. 14.
    V. K. Neil, L. S. Hall, R. K. Cooper, Part. Accel. 9, 213 (1979).Google Scholar
  15. 15.
    R. J. Briggs, D. L. Birx, G. J. Caporaso, V. K. Neil, T. C. Genoni, Part. Accel. 18, 41 (1985).Google Scholar
  16. 16.
    J. Poukey, B. Godfrey, T. Hughes, M. Campbell, IEEE Trans. Nuc. Sei. NS-30, 2389 (1983).Google Scholar
  17. 17.
    G. J. Caporaso, W. A. Barletta, V. K. Neil, Part. Accel. 11, 71 (1980).Google Scholar
  18. 18.
    C. W. Roberson, IEEE Trans. Nuc. Sei. NS-28, 3433 (1981).Google Scholar
  19. 19.
    M. A. Wilson, IEEE Trans. Nuc. Sei. NS-28, 3375 (1981).Google Scholar
  20. 20.
    A. Mondelli, D. Chernin, S. D. Putnam, L. Schlitt, V. Bailey, Beams ’86, (Osaka Univ., Osaka, 1986), p. 755.Google Scholar
  21. 21.
    C. W. Roberson, A. Mondelli, and D. Chernin, Part. Accel. 17, 79 (1985).Google Scholar
  22. 22.
    A. I. Pavlovskii, G. D. Kuleshov, G. V. Sklizkov, Y. A. Zysin, A. I. Gerasimov, Dokl. Akad. Nauk SSSR 160, 68 (1965) [Sov. Phys. Dokl. 10, 30 (1967)].Google Scholar
  23. 23.
    C. A. Kapetanakos, P. Sprangle, D. P. Chernin, S. J. Marsh, I. Haber, Phys. Fluids 26, 1634 (1983).MATHCrossRefGoogle Scholar
  24. 24.
    A. I. Pavlovskii, G. D. Kuleshov, A. I. Gerasimov, A. P. Klement’ev, V. O. Kuznetsov, V. A. Tananakin, A. D. Tarasov, Zh. Tekh. Fiz. 47, 370 (1977) [Sov. Phys. Tech. Phys. 22, 218 (1977)].Google Scholar
  25. 25.
    C. A. Kapetanakos, P. Sprangle, S. J. Marsh, Phys. Rev. Lett. 49, All (1982).Google Scholar
  26. 26.
    R. W. Landau, V. K. Neil, Phys. Fluids 9, 2412 (1966).CrossRefGoogle Scholar
  27. 27.
    B. B. Godfrey, T. P. Hughes, Part. Accel. 21, 173 (1987).Google Scholar
  28. 28.
    T. P. Hughes, Beams ’86 (Osaka Univ., Osaka, 1986), p. 815.Google Scholar
  29. 29.
    T. P. Hughes, B. B. Godfrey, Phys. Fluids 29, 1698 (1986).CrossRefGoogle Scholar
  30. 30.
    D. Chernin, P. Sprangle, Part. Accel. 12, 101 (1982).Google Scholar
  31. 31.
    B. B. Godfrey, B. S. Newberger, L. A. Wright, M. M. Campbell, “IFR Transport in Recirculating Accelerators, ” AMRC-R-741 (Mission Research Corporation, Albuquerque, 1985).Google Scholar
  32. 32.
    R. J. Briggs, “Suppression of Transverse Beam Breakup Modes in an Induction Accelerator by Gas Focusing, ” UCID-18633 (Lawrence Livermore National Laboratory, Livermore, 1980).CrossRefGoogle Scholar
  33. 33.
    B. Hui, Y. Y. Lau, Phys. Rev. Lett. 53, 2024 (1984).CrossRefGoogle Scholar
  34. 34.
    S. L. Shope, C. A. Frost, G. T. Leifeste, C. E. Crist, P. D. Kiekel, J. W. Poukey, B. B. Godfrey, IEEE Trans. Nuc. Sei. NS-32, 3091 (1985).Google Scholar
  35. 35.
    H. L. Buchanan, Phys. Fluids 30, 221 (1987).CrossRefGoogle Scholar
  36. 36.
    R. F. Schneider, J. R. Smith, Phys. Fluids 29, 3917 (1986).CrossRefGoogle Scholar
  37. 37.
    S. Humphries, J. Freeman, J. Greenly, G. W. Kuswa, C. W. Mendel, J. W. Poukey, D. Woodall, “Production and Post-Acceleration of Intense Ion Beams in Magnetically Insulated Gaps, ” SAND79–1673 (Sandia National Laboratories, Albuquerque, 1979).CrossRefGoogle Scholar
  38. 38.
    A. Hyder, F. Rose, A. Guenther (ed.), High Brightness Accelerators (Plenum, New York, 1988).Google Scholar
  39. 39.
    E. P. Lee, R. K. Cooper, Part. Accel. 7, 83 (1976).Google Scholar
  40. 40.
    E. P. Lee, Phys. Fluids 19, 60 (1976).MathSciNetCrossRefGoogle Scholar
  41. 41.
    E. P. Lee, “Determination of the Radius of a Self-Pinched Beam from its Energy Integral, ” UCID-18495 (Lawrence Livermore National Laboratory, Livermore, 1980).CrossRefGoogle Scholar
  42. 42.
    D. Mitrovich, “A Model for Calculating Phermex Performance, ” AMRC-R-661 (Mission Research Corporation, Albuquerque, 1984).Google Scholar
  43. 43.
    G. Caporaso, private communication (1987).Google Scholar
  44. 44.
    W. B. Herrmannsfeldt, “Electron Trajectory Program, ” SLAC-226 (1979).Google Scholar
  45. 45.
    A. C. Paul, “EBQ Code - Transport of Space Charge Beams in Axially Symmetric Devices, ” UCID-8005 (Lawrence Berkeley Laboratory, Berkeley, 1978).Google Scholar
  46. 46.
    B. B. Godfrey, Phys. Fluids 30, 575 (1987).CrossRefGoogle Scholar
  47. 47.
    R. C. Davidson, Theory of Nonneutral Plasmas (Benjamin, New York, 1974), Ch. 3.1.Google Scholar
  48. 48.
    W. H. Bennett, Phys. Rev. 45, 890 (1934).CrossRefGoogle Scholar
  49. 49.
    W. H. Bennett, Phys. Rev. 98, 1584 (1955).MATHCrossRefGoogle Scholar
  50. 50.
    L. A. Wright, B. B. Godfrey, “A Directory of Equilibrium Distribution Functions for Use in the Orbit Code, ” AMRC-R-413 (Mission Research Corporation, Albuquerque, 1982).Google Scholar
  51. 51.
    R. J. Adler, L. A. Wright, unpublished (1983).Google Scholar
  52. 52.
    G. J. Caporaso, A. G. Cole, IEEE Trans. Nuc. Sei. NS-30, 2618 (1983).Google Scholar
  53. 53.
    R. J. Adler, Part. Accel. 12, 39 (1982).Google Scholar
  54. 54.
    J. R. Freeman, “Simulations of Beam Transport in an IFR Propagation Channel, ” SAND86–0797 (Sandia National Laboratories, Albuquerque, 1986).Google Scholar
  55. 55.
    T. P. Hughes, B. B. Godfrey, Phys. Fluids 27, 1531 (1984).CrossRefGoogle Scholar
  56. 56.
    G. Molière, Z. Naturforsch. A3, 78 (1948).Google Scholar
  57. 57.
    E. Keil, E. Zeitler, W. Zinn, Z. Naturforsch. A15, 1031 (1960).MathSciNetGoogle Scholar
  58. 58.
    I. Lerche, J. Math, Phys. 8, 1838 (1967).MATHGoogle Scholar
  59. 59.
    G. J. Caporaso, W. A. Barletta, and V. K. Neil, Part. Accel. 11, 71 and 182 (1980).Google Scholar
  60. 60.
    J. F. Traub, Iterative Methods for the Solution of Equations (Prentice-Hall, Englewood Cliffs, 1964), Ch. 10.Google Scholar
  61. 61.
    B. B. Godfrey, “Muller’s Method Root Solver and CTSS Interface for Dispersion Relation Programs, ” AMRC-N-368 (Mission Research Corporation, Albuquerque, 1987).Google Scholar
  62. 62.
    I. O. Kerner, Num. Math. 8, 290 (1966).MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    D. Kahaner, “Zeroes of a Polynomial with Optional Error Bounds, ” C217 (Los Alamos National Laboratory, Los Alamos, 1979).Google Scholar
  64. 64.
    B. B. Godfrey, IEEE Trans. Pias. Sei. PS-7, 33 (1979).Google Scholar
  65. 65.
    R. C. Davidson, Theory of Nonneutral Plasmas (Benjamin, New York, 1974), p. 21–24.Google Scholar
  66. 66.
    L. F. Shampine, H. A. Watts, S. M. Davenport, SIAM Rev. 18, 376 (1976).MathSciNetMATHCrossRefGoogle Scholar
  67. 67.
    B. B. Godfrey, “Resistive Wall Instabilities in Radial Pulseline Accelerators, ” AMRC-R-345 (Mission Research Corporation, Albuquerque, 1982).Google Scholar
  68. 68.
    M. L. Sloan, W. E. Drummond, Phys. Rev. Lett. 31, 1234 (1973).CrossRefGoogle Scholar
  69. 69.
    P. Sprangle, A. T. Drobot, W. M. Manheimer, Phys. Rev. Lett. 36, 1880 (1976).CrossRefGoogle Scholar
  70. 70.
    B. B. Godfrey, B. S. Newberger, J. Appl. Phys. 50, 45 (1979).CrossRefGoogle Scholar
  71. 71.
    A. Friedman, R. N. Sudan, J. Denavit, J. Comp. Phys. 40, 1 (1981).MATHCrossRefGoogle Scholar
  72. 72.
    T. P. Hughes, B. B. Godfrey, “KMRAD: A Linearized Particle Code for the Study of Resistive Instabilities, ” AMRC-R-364 (Mission Research Corporation, Albuquerque, 1982).Google Scholar
  73. 73.
    T. P. Hughes, B. S. Newberger, “Electrostatic Focusing in Compact Recirculating Accelerators, ” AMRC-R-896 (Mission Research Corporation, Albuquerque, 1987).Google Scholar
  74. 74.
    R. J. Adler, B. B. Godfrey, “Radial Pulseline Electron Accelerator Study, ” AMRC-R-368 (Mission Research Corporation, Albuquerque, 1982).Google Scholar
  75. 75.
    V. K. Neil, “The Image Displacement Effect in Linear Induction Accelerators, ” UCID-17976 (Lawrence Livermore National Laboratory, Livermore, 1978).CrossRefGoogle Scholar
  76. 76.
    S. Bodner, V. IC Neil, L. Smith, Part. Accel. 1, 327 (1970).Google Scholar
  77. 77.
    G. J. Caporaso, A. G. Cole, K. W. Struve, “Beam Breakup Instability Experiments on the Experimental Test Accelerator and Predictions for the Advanced Test Accelerator, ” UCRL-88262 (Lawrence Livermore National Laboratory, Livermore, 1983).Google Scholar
  78. 78.
    B. B. Godfrey, unpublished.Google Scholar
  79. 79.
    E. P. Lee, Phys. Fluids 21, 1327 (1978).CrossRefGoogle Scholar
  80. 80.
    G. J. Caporaso, A. G. Cole, E. J. Lauer, “IFR Hose Theory, ” UCRL-92874 (Lawrence Livermore National Laboratory, Livermore, 1985).Google Scholar
  81. 81.
    B. I. Cohen, ed., Multiple Time Scales (Academic Press, Orlando, 1985).MATHGoogle Scholar
  82. 82.
    B. Adler, S. Fernbach, M. Rotenberg, eds., Meth. Comp. Phys., Vol. 9 (1972).Google Scholar
  83. 83.
    C. K. Birdsall, A. B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill, New York, 1985).Google Scholar
  84. 84.
    B. B. Godfrey, R. J. Faehl, B. S. Newberger, W. R. Shanahan, L. E. Thode, Beams 77 (Cornell Univ., Ithaca, 1977), Vol. H, p. 541.Google Scholar
  85. 85.
    E. L. Lindman, J. Comp. Phys. 18, 66 (1975).MATHCrossRefGoogle Scholar
  86. 86.
    T. P. Hughes, B. B. Godfrey, “Modified Betatron Accelerator Study, ” AMRC-R-655 (Mission Research Corporation, Albuquerque, 1984).Google Scholar
  87. 87.
    M. M. Campbell, B. B. Godfrey, “IVORY User’s Manual, ” AMRC-R-454 (Mission Research Corporation, Albuquerque, 1983).Google Scholar
  88. 88.
    C. W. Neilson, H.R. Lewis, Meth. Comp. Phys. 16, 367 (1976).Google Scholar
  89. 89.
    J. K. Boyd, “Numerical Determination of Injector Quality for High Beam Quality, ” UCRL-93456 (Lawrence Livermore National Laboratory, Livermore, 1985).Google Scholar
  90. 90.
    J. K. Boyd, “Simulation of an ATA-E-Beam Formed from a Laser-Generated Plasma, ”UCRL-92844 (Lawrence Livermore National Laboratory, Livermore, 1985).Google Scholar
  91. 91.
    B. B. Godfrey, “The IPROP Three-Dimensional Beam Propagation Code, ” AMRC-R-966 (Mission Research Corporation, Albuquerque, 1987).Google Scholar
  92. 92.
    E. P. Lee, “The New Field Equations, ” UCID-17286 (Lawrence Livermore National Laboratory, Livermore, 1976).Google Scholar
  93. 93.
    J. K. Boyd, E. P. Lee, S. S. Yu, “Aspects of Three Field Approximations: Darwin, Frozen, Empulse, ” UCID-20453 (Lawrence Livermore National Laboratory, Livermore, 1985).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1991

Authors and Affiliations

  • Brendan B. Godfrey

There are no affiliations available

Personalised recommendations