Comments on Ionization Dynamics, Radiation Emission, and Dense Plasma Effects in Hot Plasmas

  • Jack Davis
Conference paper

Abstract

For a variety of plasma conditions a comparison is made between three standard models of ionization equilibrium, namely corona, local thermodynamic, and collisional radiative equilibrium, respectively. Through the use of examples and illustrations it is shown that for the same plasma conditions and identical level structure and rate coefficients, the different models predict widely varying results that can significantly affect such important plasma properties as charge state, transport coefficients, energy transport, magnitude and distribution of the emitted radiation, and various features of diagnostic value. Also, the frontside emission spectra from a laser target interaction is shown for a variety of standard approximations including optically thick and thin, with and without inner shell opacities, and Rosseland mean opacities. The results show the consequences of these approximations and their effects on the emitted spectra. Finally, a discussion is given on the various effects that a dense plasma environment has on atomic structure and atomic processes including level shifts, ionization lowering, collision cross sections, and collision widths.

Keywords

Entropy Titanium Manifold Argon Recombination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. R. Bates, A. E. Kingston, R. W. P. McWhirter, Proc. Roy. Soc: A267, 297 (1962), A270, 155 (1962).CrossRefGoogle Scholar
  2. 2.
    K. G. Whitney, J. Davis, J. Appl. Phys. 45, 5294 (1974).CrossRefGoogle Scholar
  3. 3.
    J. Davis, K. G. Whitney, J. Appl. Phys. 47, 1426 (1076).CrossRefGoogle Scholar
  4. 4.
    D. Duston, J. Davis, Phys. Rev. 21 A, 1664 (1980).Google Scholar
  5. 5.
    D. Duston, J. Davis, Phys. Rev. 23A, 2602 (1981).Google Scholar
  6. 6.
    R. W. P. McWhirter, “Plasma Diagnostic Techniques,” Ed. R. H. Huddleston and S. L. Leonard, Academic Press, New York, 201–264 (1965).Google Scholar
  7. 17.
    S. R. Stone, J. C. Weisheit, UCID Rpt.-20262, Nov. (1984).Google Scholar
  8. 8.
    D. Duston, R. Clark, J. Davis, J. Apruzese, Phys. Rev. 27A, 1441 (1983).Google Scholar
  9. 9.
    D. Duston, J. Davis, Phys. Rev. 21 A, 932 (1980); J. Apruzese, J. Davis, D. Duston and P. Kepple, JQSRT 23, 479 (1980).Google Scholar
  10. 10.
    K. G. Whitney, J. Davis, J. Apruzese, “Cooperative Effects in Matter and Radiation,” Ed. by CM. Bowden, D.W. Howgate and H.R. Robl, p. 115, Plenum Press, New York (1977).Google Scholar
  11. 11.
    H. R. Griem, “Plasma Spectroscopy,” McGraw Hill, New York (1964).Google Scholar
  12. 12.
    D. Duston, R. Clark, J. Davis, Phys. Rev. 31 A, 3220 (1985). Also, see Ref. 8.Google Scholar
  13. 13.
    U. Gupta, M. Blaha, J. Davis, J. Phys. B. 17, 3617 (1987).CrossRefGoogle Scholar
  14. 14.
    J. Davis, M. Blaha, JQSRT 27, 307 (1982).Google Scholar
  15. 15.
    M. W. C. Dharma-Wardana, JQSRT 27, 315 (1982).Google Scholar
  16. 16.
    F. Perrot, M. W. C. Dharma-Wardana, Phys. Rev. 29A, 1378 (1984).Google Scholar
  17. 17.
    J. Davis, M. Blaha, R. Cauble, U. Gupta, NRL Memo Rpt. 5311 (1984).Google Scholar
  18. 18.
    U. Gupta, A. K. Rajagopal, Phys. Rev. 87, No. 6 (1982).Google Scholar
  19. 19.
    M.W.C. Dharma-Wardana and R. Taylor, J. Phys. C. 14, 629 (1981).CrossRefGoogle Scholar
  20. 20.
    J. Davis, M. Blaha, “Physics of Electronics and Atomic Collisions” Ed. by S. Datz, North Holland Pub. Co., 811 (1982).Google Scholar
  21. 21.
    R. D. Cowan, “The Theory of Atomic Structure and Spectra,” U. Cal. Press, Berkeley (1981).Google Scholar
  22. 22.
    J. Steward, K. Pyatt, Jr., Ap. J. 144, 1203 (1966).CrossRefGoogle Scholar
  23. 23.
    S. Skupsky, Phys. Rev. A21, 1316 (1980).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1991

Authors and Affiliations

  • Jack Davis

There are no affiliations available

Personalised recommendations