Fluxes in the Surface Layer Under Advective Conditions

  • H. A. R. de Bruin
  • N. J. Bink
  • L. J. M. Kroon


The surface fluxes of water vapor, sensible heat, and momentum are important in many meteorological, agricultural, and hydrological problems. In most applications it is (tacitly) assumed that the Earth’s surface is, on the scale of interest, horizontally homogeneous. An example is the way in which the surface fluxes are parameterized in models for the prediction of weather and climate. Also, most measuring techniques used for the determination of the surface fluxes are based on the assumption of horizontal homogeneity.


Heat Flux Bound Layer Meteorol Momentum Flux Surface Flux Sonic Anemometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beljaars ACM, Schotanus P, Nieuwstadt FTM (1983) Surface layer similarity under non-uniform fetch conditions. J Climatol Appl Meteorol 22:1800–1810.CrossRefGoogle Scholar
  2. Bruin HAR de (1982) The energy balance of the Earth’s surface. Ph.D. dissertation, Agricultural University, Wageningen.Google Scholar
  3. Brutsaert WH (1982) Evaporation into the atmosphere. “Environmental Fluid Mechanics”. D. Reidel, Dordrecht, Holland.Google Scholar
  4. Hinze JO (1959) “Turbulence”. McGraw-Hill, New York.Google Scholar
  5. Kroon LJM (1985) Profile derived fluxes above inhomogeneous terrain: A numerical approach. Ph.D. dissertation, Agricultural University, Wageningen.Google Scholar
  6. Lang ARG, McNaughton KG, Fazu C, Bradley EF, Othaki E (1983) Inequality of eddy tranfer coefficients for vertical transports of sensible heat and latent heat under advective inversions. Bound Layer Meteorol 25:25–41.CrossRefGoogle Scholar
  7. McBean GA, Miyake M (1972) Turbulent transfer mechanisms in the atmospheric surface layer. Quart J R Meteorol Soc 98:383–398.CrossRefGoogle Scholar
  8. Monteith JL (1981) Evaporation and surface temperature. Quart J R Meteorol Soc 107:1–27.CrossRefGoogle Scholar
  9. Panofsky HA, Dutton JA (1984) “Atmospheric Turbulence, Models and Methods for Engineering Applications”. Wiley, New York.Google Scholar
  10. Rao KS, Wyngaard JS, Coté OR (1974) Local advection of momentum, heat and moisture in micrometeorology. Bound Layer Meteorol 7:331–348.CrossRefGoogle Scholar
  11. Schotanus P Nieuwstadt FTM, Bruin HAR de (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Bound Layer Meteorol 26:81–93.CrossRefGoogle Scholar
  12. Tillman JE (1972) The indirect determination of stability, heat and momentum fluxes in the atmospheric boundary layer from simple scalar variables during dry unstable conditions. J Appl Meteorol 11:783–792.CrossRefGoogle Scholar
  13. Vugts HF, Cannemeijer F, Tesselaar F (1988) The Crau experiment. Parameterization of the surface fluxes. Internal report Free University Amsterdam, Department of Meteorology.Google Scholar
  14. Wyngaard JC (1975) Modelling the planetary boundary layer-extension to the stable case. Bound Layer Meteorol 9:441–460.CrossRefGoogle Scholar
  15. Wyngaard JC, Coté OR, Izumi Y (1971) Local free convection, similarity, and the budgets of shear stress and heat flux. J Atmos Sci 28:1171–1182.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1991

Authors and Affiliations

  • H. A. R. de Bruin
  • N. J. Bink
  • L. J. M. Kroon

There are no affiliations available

Personalised recommendations