Indirect Measurements of Fluxes Using Doppler Sodar

  • A. Weill


Since 1970, Sodar (Sound Detection and Ranging) has been developed as an economical and simple instrument giving wind profiles in the atmospheric boundary layer. The effort was initiated with a research point of view; however, rapidly considering the potential of the results, commercial systems have been built. Remote sensing with Sodar is now recognized as the most simple remote sensing technique to estimate wind and turbulence in the lower part of the atmospheric boundary layer (ABL). Doppler Sodar data joined with advances in turbulence theory and ABL modeling (Brown and Hall, 1978; Neff and Coulter, 1986) have led to a better understanding of the different parts of the boundary layer. For more information about these results and a historical point of view of acoustic sounding, see Little (1969), Weill (1981), Underwood (1984), Singal (1988), and Kallistratova (1959).


Atmospheric Boundary Layer Bound Layer Meteorol Surface Heat Flux Momentum Flux Convective Boundary Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. André JC, Bougeault P (1988) On the use of the Hapex Mobilhy data for the validation and development of parameterization schemes of surface fluxes. Report of the 2nd session of the SSG on Land-Surface Processes and Climate, WMO, Geneva. WCP publication Series No. 126.Google Scholar
  2. André JC Goutorbe JP, Perrier A, Becker F, Bessemoulin P, Bougeault P, Brunet Y, Brutsaert W, Carlson T, Cuenca R, Gash J, Gelpe J, Hildebrand P, Lagouarde JP, Lyod C, Mahrt L, Mascard P, Mazaudier C, Noilhan J, Ottle C, Payen M, Phulpin T, Stull R, Shuttleworth J, Schmugge T, Taconet O, Tarrieu C, Thepenier RM, Valencogne C, Vidal-Madjar D, Weill A (1988) HAPEX-MOBILHY: First results from the special observing period. Ann Geophys 6:477–492.Google Scholar
  3. Baudin F (1977) Estimateurs de fréquence pour mesurer la dérive Doppler Sodar. Rep. CRPE NT/88, Orléans Cédex, France.Google Scholar
  4. Brown EH, Hall FF Jr (1978) Advances in atmospheric acoustics. Rev Geophys Space Phys 16:47–110.CrossRefGoogle Scholar
  5. Businger JA, Wyngaard JC, Yzumi Y, Bradley EF (1971) Flux profile relationships in the atmospheric surface layer. J Atmos Sci 25:1021–1025.Google Scholar
  6. Chong M (1976) Measure des profus de vent par Sodar-Doppler. Note technique CRPE/22, CRPE, Orléan Cédex, France.Google Scholar
  7. Chong M, Testud J (1983) Three dimensional wind field analysis from dual Doppler radar data. Part 3. The boundary conditions: An optimum determination based on a variational concept. J Clim Appl Meteorol 22:1227–1241.CrossRefGoogle Scholar
  8. Clarke RH (1970) Observational studies in the atmospheric boundary layer. Quart JR Meteorol Soc 96: 91–114.CrossRefGoogle Scholar
  9. Coulter RL, Wesely ML (1980) Estimates of surface heat flux from Sodar and Laser scintillations measurements in the unstable boundary layer. J Appl Meteorol 2(19): 1209–1222.CrossRefGoogle Scholar
  10. Desbraux G, Weill A (1986) Mean turbulent properties of the stable boundary layer during the COAST experiment. Atmos Res 4(20): 151–164.CrossRefGoogle Scholar
  11. Druilhet A, Frangi JP, Guedalia D, Fontan J (1983) Experimental studies of the turbulent structure parameters of the convective boundary layer. J Climate Appl Meteorol 22:593–608.Google Scholar
  12. Dubosclard G (1980) A comparison between observed and predicted values for the entrainment in planetary boundary layer. Bound Layer Meteorol 18(11):473–483.CrossRefGoogle Scholar
  13. Dubosclard G (1986) These d’Etat, IOPG (Institut Observatoire de Physique du Globe) de Clermont Fer-rand.Google Scholar
  14. Eymard L, Weill A (1979) A study of gravity waves in the planetary boundary layer by acoustic sounding. Bound Layer Meteorol 17:231–245.CrossRefGoogle Scholar
  15. Eymard L, Weill A (1982) Investigation of clear air convective structures in the P.B.L., using a dual Doppler radar and a Doppler sodar. J Appl Meteorol 21:1891–1906.CrossRefGoogle Scholar
  16. Eymard L, Weill A (1988) Dual Doppler investigation of the tropical boundary layer. J Atmos Sci 43:853–864.CrossRefGoogle Scholar
  17. Gaynor JE (1977) Acoustic Doppler measurements of atmoshperic boundary layer structure functions and energy dissipation rates. J Appl Meteorol 16:148–155.CrossRefGoogle Scholar
  18. Greenhut GK, Bean BR (1981) Aircraft measurements of boundary layer turbulence over the central Pacific Ocean. Bound Layer Meteorol 14:513–523.Google Scholar
  19. Gupta SK, Kunhikrihnan V, Radhikha V, Narayanan N (1986) Estimating surface sensible heat flux and surface measurements in the evolving boundary layer. Atmos Res 20:119–123.CrossRefGoogle Scholar
  20. Haugen DA (Editor) (1973) “Workshop in Micrometeorology”. American Meteorological Society, Boston.Google Scholar
  21. Itier B (1981) Une méthode simple pour la measure de l’évapotranspiration réelle à l’échelle de la parcelle, Agronomie 1(10): 869–876.CrossRefGoogle Scholar
  22. Kallistratova MA (1959) Procedure for investigating sound scattering in the atmoshpere. Akus Zh 5(5): 496–498.Google Scholar
  23. Klapisz C, Weill A (1978) Modèle semi-empirique d’évolution matinale du profil de vent entre le sol et le sommet de l’inversion. J Recher Atmos 12:113–117.Google Scholar
  24. Klapisz C, and Weill A (1982) Mean horizontal wind in an inversion capped boundary layer, J. Appl. Meteor. 24:648–655.CrossRefGoogle Scholar
  25. Kraichnan RH (1953) The scattering of sound in a turbulent medium. J Acoust Soc Am 25(6): 1096–1104.CrossRefGoogle Scholar
  26. Kristensen L, Gaynor JE, Neff WD (1986) Can mono-static Doppler Sodar be used to determine fluxes? (invited paper). Ground Based Remote Sensing Conference, August 25/28, pp. 199–211. Max Plank Institute.Google Scholar
  27. Kropfli RA, Hildebrand P (1980) Doppler radar measurement in the P.B.L. during Phoenix, preprints, 19th Conference on Radar Meteorology, Miami, pp. 637–644. American Meteorological Society, Boston.Google Scholar
  28. Lenschow DH, Stephens PL (1980) The role of the ther-mals in the convective boundary layer. Bound Layer Meteorol 19:509–532.CrossRefGoogle Scholar
  29. Lenschow DH, Stankov B (1986) Length scales in the convective boundary layer. J Atmos Sci 42:1198–1209.CrossRefGoogle Scholar
  30. Little CG (1969) Acoustic methods for the remote probing of the lower atmoshpere. Proc IEEE 53:571–578.CrossRefGoogle Scholar
  31. Lumley JL, Panofsky HA (1964) “The Structure of Atmospheric Turbulence”. Wiley-Interscience New York.Google Scholar
  32. Masmoudi M (1988) Etude de l’écoulement à moyenne échelle au cours de l’expérience Mésogers 84. Thèse Université Paris 6.Google Scholar
  33. Mazaudier C, Weill A (1989) A method of determination of dynamic influence of the forest on the boundary layer using two Doppler Sodar. J Climate Appl Meteorol 28(8):705–710.CrossRefGoogle Scholar
  34. McAllister LG (1968) Acoustic sounding of the lower atmosphere. J Atmos Terr Phys 30:1439–1440.CrossRefGoogle Scholar
  35. Meiling H, List R (1977) Characteristics of vertical fluctuations in a convective urban boundary layer. 19: 1184–1195.Google Scholar
  36. Monin AS (1962) Characteristics of the scattering of sound in a turbulent atmosphere. Sov Phys Acoust, Engl Trans 7:370–373.Google Scholar
  37. Neff WD (1975) Quantitative evaluation of acoustic echoes from the planetary boundary layer. Technical Report, ERL 322-WPL, NOAA, Boulder, CO, pp. 38–44.Google Scholar
  38. Neff WD, Coulter RL (1986) Acoustic remote sensing. In “Probing the Atmospheric Boundary Layer” (D. Lenschow (ed.), pp. 201–266. American Meteorological Society, Boston.Google Scholar
  39. Pielke RA (1974) A three dimensional numerical model of the sea breezes over south Florida. Mon Weather Rev 102:115–139.CrossRefGoogle Scholar
  40. Singal SP (1988) Acoustic sounding studies of the atmospheric boundary layer. Scientific Report 30, New Zealand Meteorological Service.Google Scholar
  41. Singal SP, Aggarwal SK, Pahwa DR, Gera BS (1985) Stability studies with the help of acoustic sounding. Atmos Environ 19:221–228.CrossRefGoogle Scholar
  42. Soarès JV, Bernard R, Taconet O, Vidal Madjar D, Weill A (1988) Estimation of bare soil evaporation from airborne measurements. J Hydrol 99:281–296.CrossRefGoogle Scholar
  43. Spizzichino A (1974) Discussion of operating conditions of a Doppler Sodar. J Geophys Res 79(36):5585–5591.CrossRefGoogle Scholar
  44. Strauss B (1980) Estimation du bilan d’énergie cinétique turbulente par sondage acoustique. Document de Travail C.R.P.E./1063, Orléans Cédex, France.Google Scholar
  45. Taconet O, Weill A (1983) Convective plumes in the atmospheric boundary layer as observed with an acoustic Doppler Sodar. Bound Layer Meteorol 25: 143–158.CrossRefGoogle Scholar
  46. Underwood K (1984) Signal processing methods and the Risöe 78 experiment. Pennstate University.Google Scholar
  47. Weill, A, Klapisz C, Strauss B, Baudin F, Goutorbe JP (1980) Measuring heat flux and structure functions of temperature fluctuations. J Appl Meteorol 19(2): 199–205.CrossRefGoogle Scholar
  48. Weill A (1981) Sodar micrometeorology. In “Proceedings of the First International Symposium on Acoustic Remote Sensing of the Atmosphere and Oceans” (T. Mathews, ed.), pp. 1–60. Calgary, Alberta, Canada.Google Scholar
  49. Weill A (1983) Atmospheric applications of Sodar. In “Proceedings of the Second International Symposium on Acoustic Remote Sensing of the Atmosphere and Oceans” (G. Fiocco, ed.), pp. 1–41. Rome Italy.Google Scholar
  50. Weill A, Baudin F, Goutorbe JP, Van Grunderbeeck P, Leberre P (1978) Turbulence structure in temperature inversion and in convection fields as observed by Doppler Sodar. Bound Layer Meteorol 15:375–380.CrossRefGoogle Scholar
  51. Weill A, Mazaudier C, Baudin F, Klapisz C, Leca F, Masmoudi M, Vidal Madjar D, Bernard R, Taconet O, Gera BS, Sauvaget A, Druilhet A, Durand P, Caneil JY, Mery P, Dubosclard G, Beljaars ACM, Monna WAA, Van Der Vliet JG, Crochet M, Thomson D, Carlson T (1988) The Mesogers 84 experiment: A report. Bound Layer Meteorol 42(3):251–264.CrossRefGoogle Scholar
  52. Wyngaard JC (1973) On surface-layer turbulence. In “Workshop on Micrometeorology”. (D.A. Haugen, ed.), pp. 101–149. American Meteorological Society, Boston.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1991

Authors and Affiliations

  • A. Weill

There are no affiliations available

Personalised recommendations