Skip to main content

Water Vapor Flux Measurements from Aircraft

  • Chapter
Land Surface Evaporation

Abstract

Large-scale measurements of land surface evaporation are required to develop techniques of integrating small-scale measurements into regional estimates of evaporation. These are necessary inputs into general circulation models that are used for weather forecasting (Mintz, 1984). They are also important for assessing and controlling water resources. Most of the techniques that have been developed over the years to estimate regional evaporation do not account for the heterogeneity in land-form, soil, and vegetative cover (Brutsaert, 1982). Interpretation of satellite data in combination with meteorological data represents a realistic approach for taking this heterogeneity into account and providing representative regional estimates of evaporation (Andre et al., 1986; Sellers et al., 1988). Regional near-surface observations of evaporation fluxes may serve to evaluate the usefulness of such remote sensing models. A direct and promising approach of obtaining near-surface evaporation estimates is from turbulent flux measurements of water vapor by the eddy correlation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andre JC, Goutorbe JP, Perrier A (1986) Hapex-Mobilhy—A hydrologic atmospheric pilot experiment for the study of water budget and evaporation flux at the climatic scale. Bui Meteorol Soc 67:138–144.

    Article  Google Scholar 

  • Asrar G, Kanemasu ET, Jackson RD, Pinter PJ Jr (1985) Estimation of total above-ground phytomass production using remotely sensed data. Rem Sens Environ 17:211–220.

    Article  Google Scholar 

  • Bean BR, Emmanuel CB (1980) “Aircraft in Air-Sea Interaction: Instruments and Methods” (F Dobson, L Hasse, R Davis, eds.), pp. 571–588. Plenum Press, New York.

    Google Scholar 

  • Bean BR, Gilmer RO, Hartmann RF, McGavin RE, Reinking RF (1976) Airborne measurement of vertical boundary layer fluxes of water vapor, sensible heat and momentum during GATE. NO A A Tech Memo ERL WMPO-36, NOAA Environmental Research Laboratories, Boulder, CO.

    Google Scholar 

  • Brutsaert W (1982) “Evaporation into the Atmosphere: Theory, History and Applications”. D. Reidel, New York.

    Google Scholar 

  • Brown EW, Friehe CA, Lenschow DH (1983) The use of pressure fluctuations on the nose of an aircraft for measuring air motion. J Clim Appl Meteorol 22:171–180.

    Article  Google Scholar 

  • Buck AL (1976) The variable-path Lyman-alpha hygrometer and its operating characteristics. Bull Am Meteorol Soc 57:1113–1118.

    Article  Google Scholar 

  • Burch DE, Singleton EB, Williams D (1962) Absorption line broadening in the infrared. Appl Opt 1:359–363.

    Article  Google Scholar 

  • Coantic M, Friehe CA (1980) Slow-response humidity sensors. In “Air-Sea Interaction: Instruments and Methods” (F Dobson, L Hasse, R Davis, eds.), pp 399–411. Plenum Press, New York.

    Google Scholar 

  • Desjardins RL, Brach EJ, Alvo P, Schuepp PH (1982) Aircraft monitoring of surface carbon dioxide exchange. Science 216:733–735.

    Article  Google Scholar 

  • Desjardins RL, MacPherson JI, Betts AK, Schuepp PH, Grossman R (1988a) Divergence of CO2, latent and sensible heat fluxes: A case study. Proceedings on Lower Tropospheric Profiling: Needs and Technologies, Boulder, CO, pp. 71–72.

    Google Scholar 

  • Desjardins RL, MacPherson JI, Schuepp PH, Karanja F (1988b) An evaluation of airborne eddy flux measurements of CO2, water vapor and sensible heat. Bound Layer Meteorol 47:55–70.

    Article  Google Scholar 

  • Dobson FW (1980) Air pressure measurement techniques. In “Air-Sea Interaction: Instruments and Methods” (F Dobson, L Hasse, R Davis, eds.), pp. 231–254. Plenum Press, New York.

    Google Scholar 

  • Druilhet A, Noilhan J, Bénech B, Dubosclard G, Guedalia D, Frangi JP (1983) Étude expérimentale de la couche limite au-dessus d’un relief modéré proche d’une chaîne de montagne. Part II: Caractéristiques moyennes et turbulentes de la couche limite en situation instable. Bound Layer Meteorol 25:3–16.

    Article  Google Scholar 

  • Durand P, Druilhet A, Hedde T, Bénech B (1987) Aircraft observations of the structure of the boundary layer over a rugged hilly region (MESOGERS 84 experiment) Ann Geophys 5B:441–450.

    Google Scholar 

  • Greenhut K, Gilmer RO (1985) Calibration and accuracy of the NOAA/ERL gust probe system and intercomparison with other systems. NOAA Tech Memo ERL ESG-22.

    Google Scholar 

  • Greenhut GK, Khalsa SJS (1982) Updraft and downdraft events in the atmospheric boundary layer over the equatorial Pacific Ocean. J Atmos Sci 39:1803–1818.

    Article  Google Scholar 

  • Grossman RL, Bean BR (1973) An aircraft investigation of turbulence in the lower layers of a marine boundary layer. NOAA Technical Report ERL 291-WMPO, No. 4.

    Google Scholar 

  • Hacker JM (1982) First results of boundary layer research flights with three powered gliders during the field experiment PUKK. Beitr Phys Atmos 55:383–402.

    Google Scholar 

  • Hay DR (1980) Fast-response humidity sensors. In “Air-Sea Interaction: Instruments and Methods” F Dobson, L Hasse, R Davis, eds.), pp. 413–432. Plenum Press, New York.

    Google Scholar 

  • Hildebrand P (1988) Flux and sounding data from the NCAR King Air aircraft during HAPEX. NCAR/TN-319.

    Google Scholar 

  • Johnson HD, Lenschow DH, Danninger K (1978) A new fixed vane for air motion sensing. “Preprints, Fourth Symposium on Meteorological Observations and Instrumentation, Denver, CO”, pp. 467–470. American Meteorological Society, Boston.

    Google Scholar 

  • Lenschow DH (1986) Aircraft measurements in the boundary layer. In “Probing the Atmospheric Boundary-Layer” (DH Lenschow, ed.), pp. 39–55. American Meteorological Society, Boston.

    Google Scholar 

  • Lenschow DH, Stankov BB (1986) Length scales in the convective boundary layer. J Atmos Sci 43:1198–1209.

    Article  Google Scholar 

  • Lenschow DH, Pearson Jr R, Stankov BB (1981) Estimating the ozone budget in the boundary layer by use of aircraft measurements of ozone eddy flux and mean concentration. J Geophys Res 86:7291–7297.

    Article  Google Scholar 

  • MacPherson JI (1988) NAE Twin Otter Operations in FIFE. NAE Laboratory Technical Report LTR-FR-104, National Research Council of Canada, Ottawa.

    Google Scholar 

  • MacPherson JI, Morgan JM, Lum K (1981) The NAE Twin Otter atmospheric research aircraft. National Research Council of Canada Report LTR-FR-80.

    Google Scholar 

  • Mahrt L (1987) Boundary layer eddies and surface inhomogeneity and their impact in measurement strategy and data analysis for FIFE. Report from Oregon State University for NASA-Goddard Space Flight Center.

    Google Scholar 

  • McBean GA, Peterson RD (1975) Variations of the turbulent fluxes of momentum, heat and moisture over Lake Ontario. J Phys Oceanogr 5:523–531.

    Article  Google Scholar 

  • Meinguet J (1979) Multivariate interpolation at arbitrary points made simple. J Appl Math Phys 30:292–304.

    Article  Google Scholar 

  • Mestayer P, Rebattet C (1985) Temperature sensitivity of Lyman-alpha hygrometers. J Atmos Ocean Tech 2:656–664.

    Article  Google Scholar 

  • Mintz Y (1984) The sensitivity of numerically simulated climates to land surface conditions. In “The Global Climate” (J Houghton, ed.), pp 79–105. Cambridge University Press, Cambridge.

    Google Scholar 

  • Nicholls S (1983) An observational study of the mid-latitude, marine atmospheric boundary layer. Ph.D. dissertation, University of Southampton, U.K.

    Google Scholar 

  • Said F, Durand P, Koehler B, Druilhet A (1985) Analyse des mesures aéroportées dans la couche limite marine au cours de l’expérience. TOSCANE. Proc 3rd Int Coll on Spectral Signatures of objects in Remote Sensing, Les Arcs, France, pp. 67–71.

    Google Scholar 

  • Schuepp PH, Desjardins RL, MacPherson JI, Boisvert J, Austin LB (1987) Airborne determination of regional water use efficiency and evapotranspiration: Present capabilities and initial field tests. Agr Forest Meteorol J 41:1–9.

    Article  Google Scholar 

  • Schuepp PH, Desjardins RL, MacPherson JI, Boisvert J, Austin LB (1988) Interpretation of airborne estimates of evapotranspiration. Estimation of Areal Evapotranspiration, IAHS publication no. 177, pp. 185–196.

    Google Scholar 

  • Schuepp PH, Leclerc MY, MacPherson JI, Desjardins RL (1990) Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Bound Layer Meteorol 50:355–373.

    Article  Google Scholar 

  • Sellers PJ, Hall FG, Asrar G, Strebel DE, Murphy RE (1988) The first ISLSCP field experiment (FIFE). Bull Am Meteorol Soc 69:22–27.

    Article  Google Scholar 

  • Warner J, Telford JW (1965) A check of aircraft measurements of vertical heat flow. J Atmos Sci 22:463–465.

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and vapor transfer. Quart J Meteorol Soc 106:85–100.

    Article  Google Scholar 

  • Wyngaard JC (1983) “Mesoscale Meteorology—Theories, Observations and Models (DK Lilly, T Gal-Chen, eds.), pp. 216–224. D. Reidel, New York.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Desjardins, R.L., MacPherson, J.I. (1991). Water Vapor Flux Measurements from Aircraft. In: Schmugge, T.J., André, JC. (eds) Land Surface Evaporation. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3032-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3032-8_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97359-3

  • Online ISBN: 978-1-4612-3032-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics