Advertisement

Supernovae pp 342-351 | Cite as

Initial Models and the Prompt Mechanism of SN II

  • E. Baron
  • J. Cooperstein
Conference paper
Part of the Santa Cruz Summer Workshops in Astronomy and Astrophysics book series (SANTA CRUZ)

Abstract

Massive stars (M10 – 12 M ) become catastrophically unstable when the fuel in their central regions is exhausted. The innermost 1–2 M of fusion ashes (iron peak elements burnt to nuclear statistical equilibrium (NSE0) is the iron core. It resembles a white dwarf star dominated by the pressure of relativistic electrons, albeit a hot one. An isolated white dwarf can not support more than the appropriate Chandrasekhar mass for its composition, but the compact core of the massive star must support the overlying burning shells. Before it evolves completely to the low-temperature white dwarf configuration it loses this ability, is overwhelmed by gravitation and collapses. It is generally agreed that a Type II supernova explosion ensues but there is no general agreement about the details of the process. In fact at present there exist no self-consistent calculations of the explosive stage which adequately explain observed explosion features.

Keywords

Shock Wave Mass Point White Dwarf Iron Core Free Proton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. A. Bethe and J. R. Wilson, Astrophys. J. 295, 14 (1985).ADSCrossRefGoogle Scholar
  2. [2]
    R. Mayle, PhD thesis, University of California, Berkeley, 1985, issued as Liver- more Report UCRL-53713.Google Scholar
  3. [3]
    R. Mayle and J. R. Wilson, Astrophys. J. 334, 909 (1988).ADSCrossRefGoogle Scholar
  4. [4]
    J. R. Wilson, in Relativistic Astrophysics, edited by J. Centrella, J. LeBlanc, and R. Bowers ( Jones and Bartlett, Boston, 1985 ).Google Scholar
  5. [5]
    J. Cooperstein and E. Baron, in Supernovae, edited by A. Petschek (Springer-Verlag, New York, 1989) [in press].Google Scholar
  6. [6]
    E. S. Myra and S. A. Bludman, Astrophys. J. 340, 384 (1989).ADSCrossRefGoogle Scholar
  7. [7]
    S. Bruenn, Astrophys. J. 340, 955 (1989).ADSCrossRefGoogle Scholar
  8. [8]
    S. Bruenn, Astrophys. J. 341, 385 (1989).ADSCrossRefGoogle Scholar
  9. [9]
    K. Nomoto and M. Hashimoto, Phys. Repts. 163, 13 (1988).ADSCrossRefGoogle Scholar
  10. [10]
    S. E. Woosley and T. A. Weaver, Phys. Repts. 163, 79 (1988).ADSCrossRefGoogle Scholar
  11. [11]
    M. B. Aufderheide, G. E. Brown, D. B. Stout, T. T. S. Kuo, and P. Vogel, (1989) [preprint].Google Scholar
  12. [12]
    T. A. Weaver and S. E. Woosley, (1988) [private communication].Google Scholar
  13. [13]
    E. Baron and J. Cooperstein, Astrophys. J. (1989) [submitted].Google Scholar
  14. [14]
    E. Baron, J. Cooperstein, and S. Kahana, Nucl. Phys. A440, 744 (1985).CrossRefGoogle Scholar
  15. [15]
    E. Baron, J. Cooperstein, and S. Kahana, Phys. Rev. Lett. 55, 126 (1985).ADSCrossRefGoogle Scholar
  16. [16]
    S. Bruenn, Astrophys. J. Suppl. 58, 771 (1985).ADSCrossRefGoogle Scholar
  17. [17]
    W. Haxton, Phys. Rev. Lett. 60, 1999 (1988).ADSCrossRefGoogle Scholar
  18. [18]
    A. Burrows and J. M. Lattimer, Astrophys. J. 270, 735 (1983).ADSCrossRefGoogle Scholar
  19. [19]
    J. Cooperstein, H. A. Bethe, and G. E. Brown, Nucl. Phys. A429, 527 (1984). 9Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1991

Authors and Affiliations

  • E. Baron
  • J. Cooperstein

There are no affiliations available

Personalised recommendations