Mallet Percussion Instruments

  • Neville H. Fletcher
  • Thomas D. Rossing
Part of the Springer Study Edition book series (SSE)

Abstract

Most music authorities define an idiophone as a musical instrument (usually of wood, metal, or plastic) that makes a musical sound when struck. From a musical standpoint, tuned idiophones (e.g., the xylophone, marimba, vibraphone, bells, glockenspiel, chimes, celesta, gong) produce tones of a definite pitch, whereas untuned idiophones (e.g., the cymbal, tam-tam, triangle, and wood block) do not. From a mechanical standpoint, we could classify them into one-dimensional and two-dimensional vibrating systems, as discussed in Chapters 2 and 3, respectively. This chapter deals with one-dimensional idiophones, mostly of the tuned type and played with various types of mallets.

Keywords

Europe Rubber Expense Flange Acoustics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bork, I. (1983a), “Zur Abstimmung und Kopplung von Schwingen den Stäben und Hohlraumresonatoren.” Dissertation, Tech. Univ. Carolo-Wilhelmina, Braunschweig.Google Scholar
  2. Bork, I. (1983b). “Entwicklung von akustischen Optimierungsverfahran für Stabspiele und Membraninstrumente.” PTB report, Project 5267, Braunschweig, Germany (unpublished).Google Scholar
  3. Bork, I., and Meyer, J. (1982). Zur klanglichen bewertung von Xylophonen. Das Musikinstrument 31(8), 1076–1081. English translation in Percussive Notes 23 (6), 48–57 (1985).Google Scholar
  4. Brindle, R.S. (1970). “Contemporary Percussion.” Oxford Univ. Press, London and New York.Google Scholar
  5. Dunlop, J.I. (1984). Flexural vibrations of the triangle. Acustica 55 250–253.Google Scholar
  6. Haines, D.W. (1979). On musical instrument wood. Catgut Acoust. Soc. Newsletter, No. 31, 23–32.Google Scholar
  7. Hueber, K.A. (1972). Nachbilding des Glockenklanges mit Hilfe von Rohrenglocken und Klavierklungen. Acustica 26, 334–343. English translation in “Acoustics of Bells” (T.D. Rossing, ed.), pp. 340–357. Van Nostrand-Reinhold, Princeton, New Jersey, 1984.Google Scholar
  8. Kinsler, L.E., Frey, A.R., Coppens, A.B., and Sanders, J.V. (1982). “Fundamentals of Acoustics,” 3rd ed. Wiley, New York.Google Scholar
  9. Kittelson, K.E. (1966). Measurement and description of shock. Brüel and Kjaer Tech. Rev. No. 3–1966.Google Scholar
  10. Kvistad, G., and Rossing, T.D. (1977). Variable timbre in mallet percussion instruments. J. Acoust. Soc. Am. 61, S21 (abstract).ADSCrossRefGoogle Scholar
  11. MacCallum, F.K. (1968). “The Book of the Marimba.” Carlton Press, New York. Moore, J. (1970). “Acoustics of Bar Percussion Instruments.” Ph.D. thesis, Ohio State University, Colombus, Ohio.Google Scholar
  12. Morrow, C.T. (1957). The shock spectrum as a criterion of severity of shock impulses. J. Acoust. Soc. Am. 29, 596–602.MathSciNetADSCrossRefGoogle Scholar
  13. Peinkofer, K., and Tannigel, F. (1969). “Handbook of Percussion Instruments.” English translation by K. and E. Stone, Schott, London, 1976.Google Scholar
  14. Rossing, T.D. (1976). Acoustics of percussion instruments—Part I. The Physics Teacher 14, 546–556.ADSCrossRefGoogle Scholar
  15. Rossing, T.D., and Shepherd, R.B. (1982). Acoustics of gamelan instruments. Percussive Notes 19 (3), 73–83.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1991

Authors and Affiliations

  • Neville H. Fletcher
    • 1
  • Thomas D. Rossing
    • 2
  1. 1.CSIRO Australia, Research School of Physical SciencesAustralian National UniversityCanberraAustralia
  2. 2.Department of PhysicsNorthern Illinois UniversityDe KalbUSA

Personalised recommendations