Skip to main content

Part of the book series: Springer Study Edition ((SSE))

Abstract

Bowed string instruments have held a special place in music for many years. They form the backbone of the symphony orchestra, and they are widely used as solo instruments and in chamber music as well. They are instruments of great beauty and versatility. Unlike many other musical instruments, bowed string instruments have been the objects of considerable scientific study. Even so, their acoustical behavior is just beginning to be understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ågren, C.-H. (1968). A second look at the viol family. Catgut Acoust. Soc. Newsletter, No. 10, 6–11.

    Google Scholar 

  • Ågren, C.-H., and Stetson, K.A. (1972). Measuring the resonances of treble viol plates by hologram interferometry and designing an improved instrument. J. Acoust. Soc. Am. 51, 1971–1983.

    Article  Google Scholar 

  • Alonso Moral, J. (1984). From properties of free top plates, of free back plates, and of ribs of properties of assembled violins. Report STL-QPSR 1/1984, pp. 1–29. Speech Transmission Laboratory, Royal Institute of Technology (KTH), Stockholm.

    Google Scholar 

  • Alonso Moral, J., and Jansson, E. (1982a). Eigenmodes, input admittance, and the function of the violin. Acustica 50, 329–337.

    Google Scholar 

  • Alonso Moral, J., and Jansson, E. (1982b). Input admittance, eigenmodes, and quality of violins. Report STL-QPSR 2–3/1982, pp. 60–75. Speech Transmission Laboratory, Royal Institute of Technology (KTH), Stockholm.

    Google Scholar 

  • Archbold, E., Burch, J.M., Ennos, A.E., and Taylor, P. A. (1969). Visual observation of surface vibration nodal patterns. Nature 222, 263–265.

    Article  ADS  Google Scholar 

  • Askenfelt, A. (1982). Eigenmodes and tone quality of the double bass. Catgut Acoust. Soc. Newsletter, No. 38, 34–39.

    Google Scholar 

  • Askenfelt, A. (1986). Measurement of bow motion and bow force in violin playing. J. Acoust. Soc. Am. 80, 1007–1015.

    Article  ADS  Google Scholar 

  • Backhaus, H.and Weymann, G. (1939). “Über neuere Ergebnisse der Geigenforschung Akust. Z. 4 302–312.

    Google Scholar 

  • Barnes, P. Chandler, P.J., Cooke, L., Fredin, S., Hammel, G., Townsend, P.D. Whitlow, H.J., and Wilzen, L. (1983). Analysis of sound spectra from bowed violins and violas. Catgut Acoust. Soc. Newsletter,No. 40, 21–26.

    Google Scholar 

  • Beldie, I.P. (1974). Vibration and sound radiation of the violin at low frequencies. Catgut Acoust. Soc. Newsletter No. 22, 13–14.

    Google Scholar 

  • Bladier, B. (1960). Sur le chevalet du violoncelle. Translated by R.B. Lindsay, in “Musical Acoustics, Part I. Violin Family Components’ (C.M. Hutchins, ed.), pp. 296–298. Dowden, Hutchinson, and Ross, Stroudsburg, Pennsylvania, 1975.

    Google Scholar 

  • Caldersmith, G. (1981). Plate fundamental coupling and its musical importance. J. Catgut Acoust. Soc. 36, 21–27.

    Google Scholar 

  • Cremer, L. (1984). “The Physics of the Violin.” Translated by J.S. Allen, MIT Press

    Google Scholar 

  • Cambridge, Massachusetts. “Physik der Geige” S. Hirzel Verlag, Stuttgart, 1981. Cremer, L., and Lazarus, H. (1968). Der Einflusz des Bogendruckes beim Anstreichen einer Saite. Proc. ICA, Tokyo.

    Google Scholar 

  • Cremer, L., and Lehringer, F. (1973). Zur Abstrahlung geschlossener Körperoberflachen. Acustica 29, 138–147.

    Google Scholar 

  • Dünnwald, H. (1983). Auswertung von Geigenfrequenzgängen. Proc. 11th ICA, Paris, 4, 373–376.

    Google Scholar 

  • Dünnwald, H. (1985). Ein Verfahren zur objektiven Bestimmung der Klangualität von Violinen. Acustica 58, 162–169.

    Google Scholar 

  • Ek, L., and Jansson, E. (1985). Vibravision and electroacoustical methods to determine vibration properties of wooden `blanks’ for violin plates. J. Catgut Acoust. Soc. 44, 16–22.

    Google Scholar 

  • Firth, I. (1974). Projects in musical acoustics. Physics Ed. 9, 479–485.

    Article  ADS  Google Scholar 

  • Firth, I. (1987). Construction and performance of quality commercial violin strings. J. Catgut Acoust. Soc. 47, 17–20.

    Google Scholar 

  • Güth, W. (1978). “Gesichtspunkte beider Konstruktion eines Resonanz-Wolfdämpfers fürs Cello. Acustica 41, 177–182.

    Google Scholar 

  • Hacklinger, M. (1978). Violin timbre and bridge frequency response. Acustica 39, 323–330.

    Google Scholar 

  • Hacklinger, M. (1979). Violin adjustment Strings and bridges. Catgut Acoust. Soc.Newsletter, No. 31, 17–19.

    Google Scholar 

  • Hacklinger, M. (1980). Note on bridge inclination. Catgut Acoust. Soc. Newsletter, No. 33, 18.

    Google Scholar 

  • Helmholtz, H.L.F. (1877). “On the Sensations of Tone,” 4th ed. Translated by A.J. Ellis, Dover, New York, 1954.

    Google Scholar 

  • Hutchins, C.M. (1967). Founding a family of fiddles. Phys. Today 20, 23–27. Hutchins, C.M. (1975). “Musical Acoustics, Part I. Violin Family Components.” Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania.

    Google Scholar 

  • Hutchins, C.M. (1976). “Musical Acoustics, Part II. Violin Family Functions.” Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania.

    Google Scholar 

  • Hutchins, C.M. (1977). Another piece of the free plate tap tone puzzle. Catgut Acoust. Soc. Newsletter 28, 22–24.

    Google Scholar 

  • Hutchins, C.M. (1980). The new violin family. In “Sound Generation in Winds, Strings,Computers,” pp. 182–203. Royal Swedish Academy of Music, Stockholm.

    Google Scholar 

  • Hutchins, C.M. (1981). The acoustics of violin plates. Scientific American 245 (4), 170–186.

    Article  Google Scholar 

  • Hutchins, C.M. (1983). A history of violin research. J. Acoust. Soc. Am. 73, 1421–1440. Hutchins, C.M. (1987). Some notes on free plate tuning frequencies for violins, violas and cellos. J. Catgut Acoust. Soc. 47, 39–41.

    Google Scholar 

  • Hutchins, C.M., Stetson, K.A., and Taylor, P.A. (1971). Clarification of “free plate tap tones” by holographic interferometry. J. Catgut Acoust. Soc. 16, 15–23.

    Google Scholar 

  • Jansson, E. (1976). Long-term-average spectra applied to analysis of music. Part III: A simple method for surveyable analysis of complex sound sources by means of a reverberation chamber. Acustica 34, 275–280.

    Google Scholar 

  • Jansson, E., Bork, I., and Meyer, J. (1986). Investigation into the acoustical properties of the violin. Acustica 62, 1–15.

    Google Scholar 

  • Jansson, E., Molin, N.-E., and Sundin, H. (1970), Resonances of a violin studied by hologram interferometry and acoustical methods, Phys. Scripta 2, 243–256.

    Article  ADS  Google Scholar 

  • Kondo, M., Kubota, H., and Sakakibara, H. (1986). Measurement of torsional motion of bowed strings with a helix pattern on its surface. Paper K3–8, Proc. 12th Int’l.Congress on Acoustics, Toronto.

    Google Scholar 

  • Krigar-Menzel, O., and Raps, A. (1891). Aus der Sitzungberichten. Ann. Phys. Chem. 44, 613–641.

    Google Scholar 

  • Lee, R.M. (1975). An investigation of two violins using a computer graphic display. Acustica 32, 78–88.

    Google Scholar 

  • Lee, A.R., and Rafferty, M.P. (1983). Longitudinal vibrations in violin strings. J. Acoust. Soc. Am. 73, 1361–1365.

    Article  ADS  Google Scholar 

  • Luke, J.C. (1971). Measurement and analysis of body vibrations of a violin. J. Acoust. Soc. Am. 49, 1264–1274.

    Article  ADS  Google Scholar 

  • Marshall, K.D. (1985). Modal analysis of a violin. J. Acoust. Soc. Am. 77, 695–709.

    Google Scholar 

  • McIntyre, M.E., and Woodhouse, J. (1978). The acoustics of stringed musical instruments. Interdisciplinary Science Reviews 3, 157–173.

    Article  Google Scholar 

  • Meinel, H. (1937). Über Frequenzkurven von Geigen. Akust. Z. 2, 22–33. Reprinted in Hutchins (1976).

    Google Scholar 

  • Menzel, R.E., and Hutchins, C.M. (1970). The optical proximity detector in violin testing. Catgut Acoust. Soc. Newsletter, No. 13, 30–35.

    Google Scholar 

  • Meyer, J. (1972). Directivity of bowed stringed instruments and its effect on orchestral sound in concert halls. J. Acoust. Soc. Am. 51, 1994–2009.

    Article  ADS  Google Scholar 

  • Meyer, J. (1975). Akustische Untersuchungen zur Klangqualität von Geigen. Instrumentenbau 29 (2), 2–8.

    Google Scholar 

  • Meyer, J. (1985). The tonal quality of violins. Proc. SMAC 83. Royal Swedish Academy of Music, Stockholm.

    Google Scholar 

  • Minnaert, M. and Vlam, C.C. (1937). The vibrations of the violin bridge, Physica 4, 361–372.

    Article  ADS  Google Scholar 

  • Müller, H.A. (1979). The function of the violin bridge. Catgut Acoust. Soc. Newsletter, No. 31, 19–22.

    Google Scholar 

  • Müller, H.A., and Geissler, P. (1983). Modal analysis applied to instruments of the violin family. Proc. SMAC 83 Royal Swedish Academy of Music, Stockholm.

    Google Scholar 

  • Niewczyk, B. and Jansson, E. (1987). Experiments with violin plates. Report STLQPSR 4/1987, pp. 25–42. Speech Transmission Laboratory, Royal Inst. of Tech. (KTH), Stockholm.

    Google Scholar 

  • Pickering, N.C. (1985). Physical properties of violin strings. J. Catgut Acoust. Soc. 44, b-8.

    Google Scholar 

  • Pickering, N.C. (1986a). Transient response of certain violin strings. J. Catgut Acoust. Soc. 45, 24–26.

    Google Scholar 

  • Pickering, N.C. (1986b). Elasticity of violin strings. J. Catgut Acoust. Soc. 46, 2–3. Pickering, N.C. (1987). Physical properties of violin bows. J. Violin Soc. Am. 8 (2), 41–57.

    MathSciNet  Google Scholar 

  • Powell, R.L., and Stetson, K.A. (1965). Interferometric vibration analysis by wavefront reconstruction. J. Opt. Soc. Am. 55, 1593–1598.

    Article  ADS  Google Scholar 

  • Rakowski, A. (1985). Bowed instruments Close relatives of the singing voice. Proc.SMAC 83. Royal Swedish Academy of Music, Stockholm.

    Google Scholar 

  • Raman, C.V. (1916). On the wolf-note in bowed string instruments. Phil. Mag. 32, 391–395.

    Google Scholar 

  • Raman, C.V. (1918). On the mechanical theory of the vibrations of bowed strings and of musical instruments of the violin family, with experimental verification of the results. Bull. 15, The Indian Association for the Cultivation of Science

    Google Scholar 

  • Reder, O. (1970). The search for the perfect bow. Catgut Acoust. Soc. Newsletter, No. 13, 21–23.

    Google Scholar 

  • Reinecke, W. (1973). “Übertragungseigenschaften des Streichinstrumentenstegs. Catgut Acoust. Soc. Newsletter, No. 19, 26–34.

    Google Scholar 

  • Reinecke, W. and Cremer, L. (1970). Application of holographic interferometry to vibrations of the bodies of string instruments. J. Acoust. Soc. Am. 48, 988–992.

    Article  ADS  Google Scholar 

  • Richardson, B.E., Roberts, G.W., and Walker, G. P. (1987). Numerical modelling of two violin plates. J. Catgut Acoust. Soc. 47, 12–16.

    Google Scholar 

  • Rodgers, O.E. (1986). Initial results on finite element analysis of violin backs. J. Catgut Acoust. Soc. 46, 18–23.

    Google Scholar 

  • Rossing, T.D. (1982). “The Science of Sound.” Addison-Wesley, Reading, Massachusetts. Chap. 10.

    Google Scholar 

  • Rubin, C., and Farrar, D.F., Jr. (1987). Finite element modeling of violin plate vibrational characteristics. J. Catgut Acoust. Soc. 47, 8–11.

    Google Scholar 

  • Sacconi, S.F. (1979). “The `Secrets’ of Stradivari.” Libreris del Convegno, Cremona.

    Google Scholar 

  • Saunders, F.A. (1937). The mechanical action of violins, J. Acoust. Soc. Am. 9, 91–98.

    ADS  Google Scholar 

  • Savart, F. (1840). Des instruments de musique. Translated by D.A. Fletcher, in Hutchins (1976), pp. 15–18.

    Google Scholar 

  • Schelleng, J.C. (1963). The violin as a circuit. J. Acoust. Soc. Am. 35, 326–338.

    Article  ADS  Google Scholar 

  • Schelleng, J.C. (1973). The bowed string and the player. J. Acoust. Soc. Am. 53, 26–41.

    Article  ADS  Google Scholar 

  • Schumacher, R.T. (1975). Some aspects of the bow. Catgut Acoust. Soc. Newsletter,No. 24, 5–8.

    MathSciNet  Google Scholar 

  • Steinkopf, G. (1963). Unpublished thesis. Techn. Univ. Berlin, described by Cremer (1984).

    Google Scholar 

  • Stetson, K.A. and Powell, R.L. (1965). Interferometric hologram evaluation and real-time vibration analysis of diffuse objects, J. Opt. Soc. Am. 55, 1694–1695.

    Article  Google Scholar 

  • Weinreich, G. (1985). Violin radiativity: Concepts and measurements. Proc. SMAC 83.Royal Swedish Academy of Music, Stockholm. pp. 99–109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Fletcher, N.H., Rossing, T.D. (1991). Bowed String Instruments. In: The Physics of Musical Instruments. Springer Study Edition. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2980-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2980-3_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94151-6

  • Online ISBN: 978-1-4612-2980-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics