Introduction to Quantized Enveloping Algebras

  • George Lusztig
Part of the Progress in Mathematics book series (PM, volume 105)


Filtration Lution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [APW]
    H. H. Andersen, P. Polo and Wen K., Representations of quantum algebras, Inv. Math. (1991).Google Scholar
  2. [BML]
    A. A. Beilinson, R. MacPherson and G. Lusztig, A geometric setting for the quantum deformation of GL, Duke Math. J. 61 (1990).Google Scholar
  3. [C]
    C. Chevalley, Certains schémas de groupes semisimples,Séminaire Bourbaki (1961/62).Google Scholar
  4. [D]
    V. G. Drinfeld, Hopf algebras and the Yang-Baxter equation, Soviet Math. Dokl. 32 (1985), 254–258.Google Scholar
  5. [DL]
    M. Dyer and G. Lusztig, Appendix, Geom. Dedicata (1990).Google Scholar
  6. [J]
    M. Jimbo, A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63–69.MathSciNetMATHCrossRefGoogle Scholar
  7. [K]
    B. Kostant, Groups over Z Proc. Symp. Pure Math. 9 (1966), 90–98, Amer. Math. Soc.Google Scholar
  8. [L1]
    G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math. 70 (1988), 237–249.MathSciNetMATHCrossRefGoogle Scholar
  9. [L2]
    G. Lusztig, Modular representations and quantum groups, Contemp. Math. 82 (1989), 59–77, Amer. Math. Soc..MathSciNetGoogle Scholar
  10. [L3]
    G. Lusztig, On quantum groups, J. Algebra 131 (1990), 466–475.MathSciNetMATHCrossRefGoogle Scholar
  11. [L4]
    G. Lusztig, Finite dimensional Hopf algebras arising from quantized universal envelop- ing algebras, Jour. Amer. Math. Soc. 3 (1990), 257–296.MathSciNetMATHGoogle Scholar
  12. [L5]
    G. Lusztig, Quantum groups at roots of 1, Geom. Dedicata (1990).Google Scholar
  13. [L6]
    G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447–498;MathSciNetMATHCrossRefGoogle Scholar
  14. G. Lusztig, Common trends in mathematics and quantum filed theoreis, ed, J. Eguchi et al., Progress of Theor. Physics 102, 175–201.Google Scholar
  15. [Ri]
    C. M. Ringel, Hall algebras and quantum groups, Inv. Math.Google Scholar
  16. [Ro]
    M. Rosso, Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra, Comm. Math. Phys. 117 (1988), 581–593.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1992

Authors and Affiliations

  • George Lusztig
    • 1
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations