Introduction to Quantized Enveloping Algebras

  • George Lusztig
Part of the Progress in Mathematics book series (PM, volume 105)

Keywords

Filtration Lution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [APW]
    H. H. Andersen, P. Polo and Wen K., Representations of quantum algebras, Inv. Math. (1991).Google Scholar
  2. [BML]
    A. A. Beilinson, R. MacPherson and G. Lusztig, A geometric setting for the quantum deformation of GL, Duke Math. J. 61 (1990).Google Scholar
  3. [C]
    C. Chevalley, Certains schémas de groupes semisimples,Séminaire Bourbaki (1961/62).Google Scholar
  4. [D]
    V. G. Drinfeld, Hopf algebras and the Yang-Baxter equation, Soviet Math. Dokl. 32 (1985), 254–258.Google Scholar
  5. [DL]
    M. Dyer and G. Lusztig, Appendix, Geom. Dedicata (1990).Google Scholar
  6. [J]
    M. Jimbo, A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63–69.MathSciNetMATHCrossRefGoogle Scholar
  7. [K]
    B. Kostant, Groups over Z Proc. Symp. Pure Math. 9 (1966), 90–98, Amer. Math. Soc.Google Scholar
  8. [L1]
    G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math. 70 (1988), 237–249.MathSciNetMATHCrossRefGoogle Scholar
  9. [L2]
    G. Lusztig, Modular representations and quantum groups, Contemp. Math. 82 (1989), 59–77, Amer. Math. Soc..MathSciNetGoogle Scholar
  10. [L3]
    G. Lusztig, On quantum groups, J. Algebra 131 (1990), 466–475.MathSciNetMATHCrossRefGoogle Scholar
  11. [L4]
    G. Lusztig, Finite dimensional Hopf algebras arising from quantized universal envelop- ing algebras, Jour. Amer. Math. Soc. 3 (1990), 257–296.MathSciNetMATHGoogle Scholar
  12. [L5]
    G. Lusztig, Quantum groups at roots of 1, Geom. Dedicata (1990).Google Scholar
  13. [L6]
    G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447–498;MathSciNetMATHCrossRefGoogle Scholar
  14. G. Lusztig, Common trends in mathematics and quantum filed theoreis, ed, J. Eguchi et al., Progress of Theor. Physics 102, 175–201.Google Scholar
  15. [Ri]
    C. M. Ringel, Hall algebras and quantum groups, Inv. Math.Google Scholar
  16. [Ro]
    M. Rosso, Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra, Comm. Math. Phys. 117 (1988), 581–593.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1992

Authors and Affiliations

  • George Lusztig
    • 1
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations