Skip to main content

Difference Hypergeometric Functions

  • Conference paper
Progress in Approximation Theory

Part of the book series: Springer Series in Computational Mathematics ((SSCM,volume 19))

Abstract

The particular solutions for hypergeometric-type difference equations on non-uniform lattices are constructed by using the method of undetermined coefficients. Recently there has been revived interest in the classical theory of special functions. In particular, this theory has been further developed through studying their difference analogs [AWl], [AW2], [NU1], [NSU], [AS1], [AS2], and [S]. Quantum algebras [D], [VS], [KR], [K], which are being developed nowadays, provide a natural basis for the group-theoretic interpretation of these difference special functions. In the present paper we discuss a method of constructing the solutions for difference equations of hypergeometric type on non-uniform lattices [AS2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atakishiyev, N.M. and Suslov, S.K. About one class of special functions, Revista Mexicana de Fisica, vol. 34, No. 2, (1988), p. 152–167.

    MathSciNet  Google Scholar 

  2. Atakishiyev, N.M. and Suslov, S.K. Difference hypergeometric functions, and Construction of solutions of the hypergeometric-type difference equation on non-uniform lattices, Physics Institute preprints No. 319 and 323, Baku, Azerbaijan SSR, 1989 (in Russian).

    Google Scholar 

  3. Atakishiyev, N.M. and Suslov, S.K. On the moments of classical and related polynomials, Revista Mexicana de Fisica, vol. 34, No. 2, (1988), p. 147–151.

    MathSciNet  Google Scholar 

  4. Askey, R. and Wilson, J.A., A set of orthogonal polynomials that generalize the Racah coefficients or 6j-symbols, SIAM J. Math. Anal., vol. 10, No. 5, (1979), p. 1008–1016.

    Article  MathSciNet  MATH  Google Scholar 

  5. Askey, R. and Wilson, J.A., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, 1985, Memoirs Amer. Math. Soc, No. 319.

    Google Scholar 

  6. Bailey, W., Generalized Hypergeometric Series, Cambridge: At the University Press, 1935.

    MATH  Google Scholar 

  7. Boole, G., A Treatise on the Calculus of Finite Differences, 2nd ed. London: Macmillan, 1872; New York: Dover, 1960, p. 236–263.

    Google Scholar 

  8. Boole, G., A Treatise on Differential Equations, 5th ed., New York: Chelsea, 1959.

    Google Scholar 

  9. Drinfel’d, V.G., Quantum Groups, Proceedings of the International Congress of Mathematicians, Berkeley, CA, 1986: American Mathematical Society, 1987, p. 798–820.

    Google Scholar 

  10. Erdelyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F., Higher transcendental functions, McGraw-Hill, New York, Vol. I, II, (1953), Vol. III, (1955).

    Google Scholar 

  11. Gasper, G. and Rahman, M., Basic hypergeometric series, Cambridge University Press, Cambridge, 1990.

    MATH  Google Scholar 

  12. Hahn, W., Beitrage zur Theorie der Heineschen Reihen. Die 24 Integrale der hypergeometrischen q-Differenzengleichung. Das q-Analogon der Laplace-Transformation, Math. Nachr. Vol. 2, No. 6, (1949), p. 340–379.

    Article  MathSciNet  MATH  Google Scholar 

  13. Hahn, W., Uber Orthogonalpolynome, die q-Differenzen-gleichungen genugen, Math. Nachr., Vol. 2, No. 1, (1949), p. 4–34.

    Article  MathSciNet  MATH  Google Scholar 

  14. Hahn, W., Uber Polynome, die gleichzeitig zwei verschiedenen Orthogonalsystemen angehoren, Math. Nachr., Vol. 2, No. 5, (1949), p. 263–278.

    Article  MathSciNet  MATH  Google Scholar 

  15. Heine, E., Handbuch der Kugelfunctionen, Vol.I, Berlin: Druck und Verlag von G. Reimer, (1878), p. 97–125, 273–285.

    Google Scholar 

  16. Heine, E.,Uber die Reihe \(1 + \frac{{\left( {{q^\alpha } - 1} \right)\left( {{q^\beta } - 1} \right)}}{{\left( {q - 1} \right)\left( {{q^\gamma } - 1} \right)}}.x + \frac{{\left( {{q^{\alpha + 1}} - 1} \right)\left( {{q^\alpha } - 1} \right)\left( {{q^{\beta + 1}} - 1} \right)\left( {{q^\beta } - 1} \right)}}{{\left( {{q^2} - 1} \right)\left( {q - 1} \right)\left( {{q^{\gamma + 1}} - 1} \right)\left( {{q^\gamma } - 1} \right)}}.{x^2} + \cdots \), J reine u. angew. Math, Vol. 32, No. 3,(1846), p. 210–212.

    Article  MATH  Google Scholar 

  17. Heine, E,Untersuchungen uber die Reihe \(1 + \frac{{\left( {1 - {q^\alpha }} \right)\left( {1 - {q^\beta }} \right)}}{{\left( {1 - q} \right)\left( {1 - {q^\gamma }} \right)}}.x + \frac{{\left( {1 - {q^\alpha }} \right)\left( {1 - {q^{\alpha + 1}}} \right)\left( {1 - {q^\beta }} \right)\left( {1 - {q^{\beta + 1}}} \right)}}{{\left( {1 - q} \right)\left( {1 - {q^2}} \right)\left( {1 - {q^\gamma }} \right)\left( {1 - {q^{\gamma + 1}}} \right)}}.{x^2} + \cdots \), J. reine u. angew. Math., Vol. 34, No. 4, (1847), p. 285–328.

    Article  MATH  Google Scholar 

  18. Ismail, M.E.H., Letessier, J., Valent, G., and Wimp, J., Two families of associated Wilson polynomials, Canad. J. Math., Vol. 42, (1990), p. 659–695.

    Article  MathSciNet  MATH  Google Scholar 

  19. Ismail, M.E.H., and Rahman, M., The associated Askey-Wilson polynomials, Trans. Amer. Math. Soc., (1991), to appear.

    Google Scholar 

  20. Kirillov, A.N., and Reshetikhin, N. Yu., Representations of the algebra U q (sl(2)), q-orthogonal polynomials and invariants of links, LOMI Preprint E-9-88, Leningrad, 1988.

    Google Scholar 

  21. Koornwinder, T.H., Orthogonal polynomials in connection with quantum groups, Orthogonal Polynomials: Theory and Practice, ed. by P. Nevai, NATO ASI Series C, Vol. 294, Kluwer Academic Publishers, 1990, p. 257–292.

    Google Scholar 

  22. Nassrallah, B. and Rahman, M., Projection formulas, a reproducing kernel and a generating function for q-Wilson polynomials, SIAM J. Math. Anal., Vol. 16, No. 1, (1985), p. 186–197.

    Article  MathSciNet  MATH  Google Scholar 

  23. Nikiforov, A.F., Suslov, S.K., and Uvarov, V.B., Classical orthogonal polynomials of a discrete variable, Nauka, Moscow, 1985 (in Russian).

    MATH  Google Scholar 

  24. Nikiforov, A.F. and Uvarov, V.B., Classical orthogonal polynomials of a dicrete variable on non-uniform lattices, Preprint No. 17, Keldysh Inst. Appl. Math., Moscow, 1983 (in Russian).

    Google Scholar 

  25. Nikiforov, A.F. and Uvarov, V.B., Special Functions of Mathematical Physics, 2nd ed., Nauka, Moscow, 1984 (in Russian).

    MATH  Google Scholar 

  26. Rahman, M., An integral representations of a 10Φ9 and continuous bi-orthogonal 10Φ9 rational functions, Can. J. Math., Vol. 38, No. 3, (1986), p. 605–618.

    Article  MATH  Google Scholar 

  27. Suslov, S.K., The theory of difference analogues of special functions of hypergeometric type, Russian Math. Surveys, The London Mathematical Society, Vol. 44, No. 2, (1989), p. 227–278, correction in ibid Vol. 45, No. 3, (1990).

    Article  MathSciNet  MATH  Google Scholar 

  28. Thomae, J.,Beitrage zur Theorie der durch Heinesche Reihe:\(1 + \frac{{1 - {q^a}}}{{1 - q}}.\frac{{1 - {q^b}}}{{1 - {q^c}}}.x + \frac{{1 - {q^a}}}{{1 - q}}.\frac{{1 - {q^{a + 1}}}}{{1 - {q^2}}}.\frac{{1 - {q^b}}}{{1 - {q^c}}}.\frac{{1 - {q^{b + 1}}}}{{1 - {q^{c + 1}}}}.{x^2} + \cdots \) darstellbaren Functionen, J. reine u. angew. Math., Vol. 70, No. 3, (1869), p. 258–281.

    Article  Google Scholar 

  29. Thomae, J.,Integration der Differenzengleichung (n+æ+1)(n+λ+1)Δ2ϕ(n)+(a+bn)Δϕ(n)+cϕ(n) = 0, Zeitschrift f. Mathematik u. Physik, 1971, Vol. 16, No. 2, p. 146–158; No. 5, p. 428–439.

    Google Scholar 

  30. Vaksman, L.L. and Korogodsky, L.I., Algebra of bounded functions on the quantum group of plane motions and q-analogues of Bessel functions, Dokl. Akad. Nauk SSSR, Vol. 304, (1989), p. 1036–1040 (in Russian), English translation in Soviet Mathematics.

    Google Scholar 

  31. Vaksman, L.L. and Soibel’man, Algebra of functions on the quantum group SU(2), Functional Anal. Appl., Vol. 22, (1988), p. 170–181.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Atakishiyev, N.M., Suslov, S.K. (1992). Difference Hypergeometric Functions. In: Gonchar, A.A., Saff, E.B. (eds) Progress in Approximation Theory. Springer Series in Computational Mathematics, vol 19. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2966-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2966-7_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7737-8

  • Online ISBN: 978-1-4612-2966-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics