Advertisement

Mechanisms in the Pistil that Regulate Gametophyte Population in Peach (Prunus persica)

  • Maria Herrero

Abstract

During the gametophytic phase there is a luxurious production of individuals. However,from all of them, only a few achieve fertilization and pass into the next generation. While many are randomly lost, others are left behind during the time that goes from pollination to fertilization.

Keywords

Pollen Tube Pollen Tube Growth Female Gametophyte Prunus Dulcis Tepary Bean 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anvari, S. F.; Stdsser, R. 1978. Eine neue fluoreszenzmikroskopische Methode zur Beurteilung der Befruchtungs-FShigkeit der Samenanlagen bei Prunus. Z Pflanzenz ucht 81: 333 – 336.Google Scholar
  2. Arbeloa, A.; Herrero, M. 1985. Valoraci 6n de la translocaci 6n al ovulo y de la esterilidad femenina en melocotonero. An. Estac. Exper. Aula Dei 17 (3–4): 214 – 220.Google Scholar
  3. Arbeloa, A.; Herrero, M. 1987. The significance of the obturator in the control of pollen tube entry into the ovary in peach (Prunus persicaAnn. Bot. 60: 681 – 685.Google Scholar
  4. Arbeloa, A.; Herrero, M. 1991. Development of the ovular structures in peach (Prunus persica). New Phytol. In press.Google Scholar
  5. Charlesworth, D. 1989. Why do the plants produce so many more ovules than seeds? Nature 338: 21 – 22.CrossRefGoogle Scholar
  6. Cruzan, M.B. 1986. Pollen tube distributions in Nicotiana glauca Evidence for density dependent growth. Amer. J. Bot. 73 (6): 902 – 907.CrossRefGoogle Scholar
  7. Cruzan, M.B. 1989. Pollen tube attrition in Eoythronium grandiflorum. Amer. J. Bot. 76 (4): 562 – 570.CrossRefGoogle Scholar
  8. Herrero, M.; Arbeloa, A. 1989. Influence of the pistil on pollen tube kinetics in peach (Prunus persica. Amer. J. Bot. 76 (10): 1441 – 1447.CrossRefGoogle Scholar
  9. Herrero, M.; Arbeloa, A.; Gascon, M. 1988. Pollen pistil interaction in the ovary in fruit trees. In: ‘Sexual Reproduction in Higher Plants’ (M. Cresti, P. Gori, E. Pacini Eds.) Springer Verlag: 297 – 302.Google Scholar
  10. Herrero, M.; Dickinson, H.G. 1979. Pollen-pistil incompatibility in Petunia hybrids changes in the pistil following compatible and incompatible intraspecific crosses. J. Cell Sci. 36: 1 – 18.PubMedGoogle Scholar
  11. Herrero, M.; Dickinson, H.G. 1980. Pollen tube growth following compatible and incompatible intraspecific pollinations in Petunia hybrida Planta 148: 217 – 221.Google Scholar
  12. Herrero, M.; Dickinson, H.G. 1981. Pollen tube development in Petunia hybrida following compatible and incompatible intraspecific matings. J. Cell Sci. 47: 365 – 383.PubMedGoogle Scholar
  13. Heslop-Harrison, J. 1983. Self–incompatibility: phenomenology and physiology. Proc. Roy. Soc. London, Ser. B, Biol. Sci. 218: 371 – 395.CrossRefGoogle Scholar
  14. Heslop-Harrison, J.; Heslop-Harrison, Y. 1985. Surfaces and secretions in the pollen–stigma interaction: a brief review. J. Cell Sci. Suppl. 2: 287 – 300.PubMedGoogle Scholar
  15. Heslop-Harrison, J.; Heslop–Harrison, Y; Reger, B.J. 1985. The pollen- stigma interaction in the grasses. 7. Pollen tube guidance and the regulation of tube number in Zea mays L. Acta Botanica Neerlandica 34, 193 – 211.Google Scholar
  16. Jensen, W. A.; Ashton, M.E.; Beasley, C.A. 1983. Pollen tube-embryo sac interaction in cotton. In: D.L. Mulcahy and E. Ottaviano (eds.), Pollen biology and implications for plant breeding, 67 – 72. Elsevier Biomedical, New York.Google Scholar
  17. Juel, H.0. 1918. Beitrage zur Bl Clenanatomie und zur systematik der Rosaceen. Kunglica Svenska Vetenskapsakademiens Handlingar 58: 5.Google Scholar
  18. Kahn, J.L; De Mason, DA 1986. A quantitative and structural comparison of C/fruspollen tube development in cross-compatible and self-incompatible gynoecic. Can. J. Bot. 64: 2548 – 2555.CrossRefGoogle Scholar
  19. Linskens, H.F. 1986. Recognition during the progamic phase. In M. Cresti and R. Dallai (eds.), Biology of reproduction and cell motility in plants and animals, 21 – 32. University of Siena, Siena.Google Scholar
  20. Uoyd, D.Q. 1980. Sexual strategies in plants. 1.- An hypothesis of serial adjustment of maternal investment during one reproductive session. New Phytol. 86: 69 – 79.CrossRefGoogle Scholar
  21. Lord, E.M.; Kohorn, L.U. 1986. Gynoecial development, pollination and the path of pollen tube growth in the tepary bean Phaseolus acutifblius. Amer. J. Bot. 73: 70 – 78.CrossRefGoogle Scholar
  22. Mulcahy, D.L 1974. Correlation between speed of pollen tube growth and seedling weight in Zea mays. Nature 249: 491 – 493.CrossRefGoogle Scholar
  23. Mulcahy, D.L 1979. The rise of Angiosperms: a genecological factor. Science 206: 20 – 23.PubMedCrossRefGoogle Scholar
  24. Mulcahy, G.B.; Mulcahy, D.L 1983. A comparison of pollen tube growth in bi- and trinucleate pollen. In D.L. Mulcahy and E. Ottaviano (Eds.), Pollen: biology and implications for plant breeding, 29 – 33. Elsevier Biomedical, New York.Google Scholar
  25. Ottaviano, E.; Sari–Gorla, M.; Mulcahy, D.L 1980. Pollen tube rates in Zea mays. implications for genetic improvement of crops. Science 210: 437 – 438.Google Scholar
  26. Pimienta, E.; Polito, V.S. 1982. Ovule abortion in ‘Nonpareil’ almond (Prunus dulcis (Mill )D.A. Webb). Am. J. Bot. 69(6): 913–920.CrossRefGoogle Scholar
  27. Schlichting, C.D.; Stephenson, A.G.; David, L.D.; Winsor, J.A. 1987. Pollen competition and offspring variance. Evol. Trends. Plants., 1 (1): 35 – 40.Google Scholar
  28. Sedgley, M. 1976. Control by the embryo sac over pollen tube growth in the style of the avocado (Persea americana Mill). New Phytol. 77: 149 – 152.CrossRefGoogle Scholar
  29. Sedgley, M. 1979. Structural changes in the pollinated and unpollinated avocado stigma and style. J. Cell Sci. 38: 49 – 60.PubMedGoogle Scholar
  30. Stephenson, A.G. 1981. Rower and fruit abortiomproximate causes and ultimate functions. Ann. Rev. Ecol. Syst. 12: 253 – 279.CrossRefGoogle Scholar
  31. Ter–Avanesian, D.V. 1978. The effect of varying the number of pollen grains used in fertilization. Theor. Appl. Genet. 52: 77 – 79.Google Scholar
  32. Tilton, V.R.; Homer, H.T. 1980. Stigma, style and obturator of Om’rthogalum caudatum (Liliaceae) and their function in the reproductive process. Am. J. Bot. 67: 1113 – 1131.CrossRefGoogle Scholar
  33. Tilton, V.R.; Lersten, N.R. 1981. Ovule development in Ornithogalum caudatum (Liliaceae) with a review of selected papers on angiosperm reproduction. III. Nucellus and megagametophyte. New Phytol. 88: 477 – 504.CrossRefGoogle Scholar
  34. Tilton, V.R.; Wilcox, L.W.; Palmer, R.G.; Albertsen, M.C. 1984. Stigma, style and obturator of soybean, Glycine max (L.) Herr. (Leguminoseae) and their function in the reproductive process. Am. J. Bot. 71: 676 – 686.CrossRefGoogle Scholar
  35. Vasil, I.K. 1974. The histology and physiology of pollen germination and pollen tube growth on the stigma and in the style. In H.F. Linskens (ed.), Fertilization in higher plants, 105 – 118. North-Holland, Amsterdam.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • Maria Herrero

There are no affiliations available

Personalised recommendations