Growth of Cracks By Intergranular Cavitation in Creep

  • A. S. Argon
  • K. J. Hsia
  • D. M. Parks


The spread of intergranular creep damage around blunt notches and sharp cracks in ductile single phase alloys is modeled by a mechanism based continuum material damage model and a finite element approach. The details of the material damage have been derived from extensive earlier experimental results on an austenitic stainless steel. The finite element simulation of the evolution of intergranular damage in the form of accumulating densities of grain boundary facet cracks has indicated that while this damage spreads out preferentially along inclined planes around the tips of sharp cracks, it localized in the symmetry plane ahead of a blunt notch. These results are in excellent agreement with the experimental observations of Ozmat, et al. on the directions of early crack growth from sharp cracks and blunt notches in Type 304 stainless steel.


Creep Rate Grain Boundary Creep Strain Cavity Growth Creep Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Argon, A. S. (1982). In Wilshire, B. and Owen, D. R. J., editors, Recent Advances in Creep and Fracture of Engineering Materials and Structures, Pineridge Press, Swansea, page 1.Google Scholar
  2. Argon, A. S. (1983). Scripta Metall., 17:5.CrossRefGoogle Scholar
  3. Argon, A. S., and Im, J. (1975). Met. Trans., 6A:839.Google Scholar
  4. Argon, A. S., Lau, C. W., Ozmat, B., and Parks, D. M. (1985). In Miller, K. J. et al., editors, Fundamentals of Deformation and Fracture, Cambridge Univ. Press, Cambridge, page 189.Google Scholar
  5. Ashby, M. F. and Dyson, B. F. (1984). In Valluri, S. R. et al., editors, Advances in Fracture Research ’84 - Proceedings of ICF6, Pergamon Press, Oxford, 1:3.Google Scholar
  6. Ashby, M. F., Gandhi, C., and Taplin, D. M. R. (1979). Acta Metall., 27:699.CrossRefGoogle Scholar
  7. Barsoum, R. S. (1977). Int. J. Numer. Met. Eng., 11:85.MATHCrossRefGoogle Scholar
  8. Bassani, J. L. and McClintock, F. A. (1981). Int. J. Sol. Struct., 17:479.MATHCrossRefGoogle Scholar
  9. Bridgman, P. W. (1952). Studies in Large Plastic Flow and Fracture, McGraw-Hill, New York.MATHGoogle Scholar
  10. Cane, B. J. (1978). Metal Sci., 12:102.Google Scholar
  11. Capano, M., Argon, A. S., and Chen, I.-W. (1989). Acta. Metall., 37:3195.CrossRefGoogle Scholar
  12. Chen, I.-W. and Argon, A. S. (1979). Acta Metall., 27:749.CrossRefGoogle Scholar
  13. Chen, I.-W. and Argon, A. S. (1981a). Acta Metall., 29:1321.CrossRefGoogle Scholar
  14. Chen, I.-W. and Argon, A. S. (1981b) Acta. Metall., 29:1759.CrossRefGoogle Scholar
  15. Chuang, T.-J., Kagawa, K. I., Rice, J. R., and Sills, L. B. (1979). Acta Metall., 27:265.CrossRefGoogle Scholar
  16. Crossman, F. W. and Ashby, M. F. (1975). Acta. Metall., 23:425.CrossRefGoogle Scholar
  17. Davis, E. A. and Manjoine, M. J. (1953). In Strength and Ductility of Metals at Elevated Temperatures, STP-128, ASTM, Philadelphia, page 67.Google Scholar
  18. Don, J. and Majumdar, S. (1986). Acta Metall., 34:961.CrossRefGoogle Scholar
  19. Dyson, B.F. (1976). Metal Sci., 10:349.CrossRefGoogle Scholar
  20. Dyson, B. F. (1987). private communication of data by Kandil and Dyson.Google Scholar
  21. Dyson, B. F. and McLean, D. (1977). Metal Sci., 11:37.CrossRefGoogle Scholar
  22. Ghahremani, F. (1980). Int. J. Solids Struct., 16:847.MATHCrossRefGoogle Scholar
  23. Griffith, A. A. (1920). Phil. Trans. Roy. Soc., (London), A221:163.Google Scholar
  24. Griffith, A. A. (1924). Proc. First Intern. Conf. Appl. Mech., (Delft), page 55.Google Scholar
  25. Hart, E. W. (1967). Acta Metall., 15:1545.CrossRefGoogle Scholar
  26. Hayhurst, D. R., Brown, P. R., Morrison, C. J. (1984). Phil Trans. R. Soc. (London), A311:131.Google Scholar
  27. Hayhurst, D. R., Dimmer, P. R., and Morrison, C. J. (1984). Phil. Trans. R. Soc. (London), A311:103.Google Scholar
  28. Hayhurst, D. R., Leckie, F. A., and Morrison, C. J. (1978). Proc. R. Soc., A360:243.Google Scholar
  29. He, M. Y. and Hutchinson, J. W. (1981). J. Appl. Mech., 48:830.MATHCrossRefGoogle Scholar
  30. Hsia, K. J. (1989). Modeling of intergranular creep damage and investigation of the role of creep crack growth in creep life prediction, Ph.D. Thesis in Mechanical Engineering, M.I.T., Cambridge, MA, U.S.A.Google Scholar
  31. Hsia, K. J., Argon, A. S. and Parks, D. M. (1991a). Mech. Mater., 11:19.CrossRefGoogle Scholar
  32. Hsia, K. J., Parks, D. M. and Argon, A. S. (1991b). Mech. Mater., 11:43.CrossRefGoogle Scholar
  33. Hull, D., and Rimmer, D. E. (1959). Phil. Mag., 4:673.CrossRefGoogle Scholar
  34. Hult, J. A. H., and McClintock, F. A. (1957). IXe Congrés International de Mécanique Appliquée, Actes, 8:51.Google Scholar
  35. Hutchinson, J. W. (1983). Acta Metall., 31:1079.CrossRefGoogle Scholar
  36. Irwin, G. R. (1948). In Fracturing of Metals, ASM: Metals Park, Ohio, page 147.Google Scholar
  37. Kachanov, L. M. (1958). Izv. Akad. Nauk SSSR Otk. Teck. Nauk. 8:26.Google Scholar
  38. Kumar, V., German, M. D. and Shih, C. F. (1981). An engineering approach for elastic—plastic fracture analysis, EPRI Topical Report NP- 1931, Palo Alto, California.Google Scholar
  39. Leckie, F. A. and Hayhurst, D. R. (1974), Proc. R. Soc., A340:323.Google Scholar
  40. Leckie, F. A. and Hayhurst, D. R. (1977). Acta Metall., 25:1059.CrossRefGoogle Scholar
  41. Martinez, L. and Nix, W. D. (1982). Met. Trans., 13A:427.Google Scholar
  42. McClintock, F. A. (1968). J. Appl. Mech., 35:363.Google Scholar
  43. McClintock, F. A. (1969). In Argon, A. S., editor, Physics of Strength and Plasticity, MIT Press, Cambridge, MA page 307.Google Scholar
  44. McClintock, F. A. (1971). In Leibowitz, H., editor, Fracture: an Advanced Treatise, Academic Press, New York, 3:47.Google Scholar
  45. McClintock, F. A. and Argon, A. S. (1966). Mechanical Behavior of Materials Addison Wesley, Reading, MA.Google Scholar
  46. McClintock, F. A., Kaplan, S. M. and Berg, C. A. (1966). International J. Fract. Mech., 2:614.Google Scholar
  47. Nagpal, V., McClintock, F. A., Berg, C. A. and Subudhi, M. (1973). In Sawczuk, A., editor, Foundations of plasticity, Noordhoff, Leyden, page 365.Google Scholar
  48. Needleman, A. and Rice, J. R. (1980). Acta. Metall., 28:1315.CrossRefGoogle Scholar
  49. Orowan, E. (1934). Z. Kristallographie, 89:327.Google Scholar
  50. Orowan, E. (1949). rep. Prog. Phys., 12:185.CrossRefGoogle Scholar
  51. Ozmat, B., Argon, A. S. and Parks, D. M. (1991). Mech. Mater., 11:1.CrossRefGoogle Scholar
  52. Parks, D. M. (1987). Nucl. Eng. Design, 105:11.CrossRefGoogle Scholar
  53. Pharr, G. M. and Nix, W. D. (1979). Acta Metall., 27:1615.CrossRefGoogle Scholar
  54. Rice, J. R. (1981). Acta Metall., 29:675.CrossRefGoogle Scholar
  55. Rice, J. R. and Johnson, M. A. (1970). In Kanninen, M. F. et al., editors, Inelastic Behavior of Solids, McGraw-Hill, New York, page 641.Google Scholar
  56. Riedel, H. (1987). Fracture at High Temperatures, Springer, Berlin.Google Scholar
  57. Sham, T.-L. and Needleman, A. (1983). Acta Metall., 31:919.CrossRefGoogle Scholar
  58. Speight, M. V. and Beere, W. (1975). Metal. Sci., 9:190.CrossRefGoogle Scholar
  59. Swindeman, R. (1982). private communication quoted by Argon et al. (1985).Google Scholar
  60. Tipper, C. F. (1949). Metallurgia, 39:133.Google Scholar
  61. Tvergaard, V. (1984). Acta Metall., 32:1977.CrossRefGoogle Scholar
  62. Tvergaard, V. (1985a). Mech. Mater., 4:181.CrossRefGoogle Scholar
  63. Tvergaard, V. (1985b). Int. J. Sol. Struct., 21:279.CrossRefGoogle Scholar
  64. Tvergaard, V. (1986). Int. J. Fracture, 31:183.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • A. S. Argon
  • K. J. Hsia
  • D. M. Parks

There are no affiliations available

Personalised recommendations