Skip to main content

Peierls Framework for Dislocation Nucleation from a Crack Tip

  • Chapter
Topics in Fracture and Fatigue

Abstract

Dislocation nucleation from a stressed crack tip is analyzed based on the Peierls concept, in which a periodic relation between shear stress and atomic shear displacement is assumed to hold along a slip plane emanating from a crack tip. This approach allows some small slip displacement to occur near the tip in response to small applied loading and, with increase in loading, the incipient dislocation configuration becomes unstable and leads to a fully formed dislocation which is driven away from the crack. An exact solution for the loading at that nucleation instability was developed using the J-integral for the case when the crack and slip planes coincide (Rice, 1992). Solutions are discussed here for cases when they do not. The results were initially derived for isotropic materials and some generalizations to take into account anisotropic elasticity are noted here. Solutions are also given for emission of dissociated dislocations, especially partial dislocation pairs in fee crystals. The level of applied stress intensity factors required for dislocation nucleation is shown to be proportional to \(\sqrt {{\gamma _{us}}}\) where γus, the unstable stacking energy, is a new solid state parameter identified by the analysis. It is the maximum energy encountered in the block-like sliding along a slip plane, in the Burgers vector direction, of one half of a crystal relative to the other. Approximate estimates of γus are summarized, and the results are used to evaluate brittle versus ductile response in fee and bee metals in terms of the competition between dislocation nucleation and Griffith cleavage at a crack tip. The analysis also reveals features of the near-tip slip distribution corresponding to the saddle point energy configuration for cracks that are loaded below the nucleation threshold, and some implications for thermal activation are summarized. Additionally, the analysis of dislocation nucleation is discussed in connection with the emission from cracks along bimaterial interfaces, in order to understand recent experiments on copper bicrystals and copper/sapphire interfaces, and we discuss the coupled effects of tension and shear stresses along slip planes at a crack tip, leading to shear softening and eased nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Anderson, P. M. (1986). Ductile and brittle crack tip response, Ph.D. Thesis, Div. of Applied Sciences, Harvard University, Cambridge, MA, USA.

    Google Scholar 

  • Argon, A. S. (1987). Brittle to ductile transition in cleavage fracture, Acta Met., 35:185–196.

    Article  Google Scholar 

  • Armstrong, R. W. (1966). Cleavage crack propagation within crystals by the Griffith mechanism versus a dislocation mechanism, Mater. Sci. Eng., 1:251–256.

    Article  Google Scholar 

  • Ashcroft, N. W. and Mermin, N. D. (1976). Solid State Physics, Holt, Rinehart and Winston, New York.

    Google Scholar 

  • Barnett, D. and Asaro, R. J. (1972). The fracture mechanics of slit-like cracks in anisotropic elastic media, J. Mech. Phys. Solids, 20: 353–366.

    Article  MATH  Google Scholar 

  • Beltz, G. E. (1991). Unpublished research, on the emission of dislocations on inclined slip planes in the Fe/TiC system.

    Google Scholar 

  • Beltz, G. E. and Rice, J. R. (1991). Dislocation nucleation versus cleavage decohesion at crack tips, In Lowe, T. C., Rollett, A. D., Follansbee, P. S. and Daehn, G. S., editors, Modeling the Deformation of Crystalline Solids, TMS, pages 457–480.

    Google Scholar 

  • Beltz, G. E., and Rice, J. R. (1992a). Dislocation nucleation at metal/ceramic interfaces, Acta Met., in press.

    Google Scholar 

  • Beltz, G.E., and Rice, J. R. (1992b). Research in progress, on the 2D and 3D calculations of the activation energy for dislocation nucleation.

    Google Scholar 

  • Beltz, G. E., and Wang, J.-S. (1992). Crack direction effects along cop-per/sapphire interfaces, Acta Met., in press.

    Google Scholar 

  • Brandes, E. A. (1983). Smithells Metals Reference Book, 6th ed., Butterworths, London.

    Google Scholar 

  • Burns, S. J. (1986). Crack tip dislocation nucleation observations in bulk specimens, Scripta Met., 20:1489–1494.

    Article  Google Scholar 

  • Cheung, K. (1990). Atomistic study of dislocation nucleation at a crack tip, Ph.D. Thesis, Dept. of Nuclear Engineering, MIT, Cambridge, MA, USA.

    Google Scholar 

  • Cheung, K., Yip, S. and Argon, A. S. (1991). Activation analysis of dislocation nucleation from a crack tip in α-Fe, J. Appl. Phys., 69:2088–2096.

    Article  Google Scholar 

  • Chiao, Y.-H., and Clarke, D. R. (1989). Direct observation of dislocation emission from crack tips in silicon at high temperatures, Acta Met., 37:203–219.

    Article  Google Scholar 

  • Daw, M. S., and Baskes, M. I. (1984). Embedded-atom method: Deriva¬tion and application to impurities and other defects in metals, Phys. Rev. B, 29:6443–6453.

    Article  Google Scholar 

  • Dragone, T. L., and Nix, W. D. (1988). Crack tip stress fields and dislo-cation nucleation in anisotropic materials, Scripta Met., 22:431–435.

    Article  Google Scholar 

  • Duesbery, M. S., Michel, D. J., Kaxiras, E. and Joos, B. (1991). Molecular dynamics studies of defects in Si, In Bristowe, P. D., Epperson, J. E., Griffith, J. E. and Liliental-Weber, Z., editors, Defects in Materials, Materials Research Society, 209:125–130.

    Google Scholar 

  • Eshelby, J. D. (1970). Energy relations and the energy-momentum tensor in continuum mechanics, In Kanninen, M. F., Adler, W. F., Rosenfield, A. R. and Jaffee, R. I., editors, Inelastic Behavior of Solids, McGraw- Hill, New York, pages 77–115.

    Google Scholar 

  • Foiles, S. M., Baskes, M. I. and Daw, M. S. (1986). Embedded-atom- method functions for the fee metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B., 33:7983–7991.

    Article  Google Scholar 

  • Foiles, S. M., and Daw, M. S. (1987). Application of the embedded atom method to Ni3Al, J. Mater. Res., 2:5–15.

    Article  Google Scholar 

  • Harrison, R. J., Spaepen, F., Voter, A. F. and Chen, A. F. (1990). Structure of grain boundaries in iron, In Olson, G. B., Azrin, M. and Wright, E. S., editors, Innovations in Ultrahigh-Strength Steel Technology, Plenum Press, pages 651–675.

    Google Scholar 

  • Hirth, J. P., and Lothe, J. (1982). Theory of Dislocations, 2nd Edition, McGraw Hill, New York.

    Google Scholar 

  • Hoagland, R. G., Daw, M. S., Foiles, S. M. and Baskes, M. I. (1990). An atomic model of crack tip deformation in aluminum using an embedded atom potential, J. Mater. Res., 5:313–324.

    Article  Google Scholar 

  • Kelly, A., Tyson, W. R. and Cotfcrell, A. H. (1967). Ductile and brittle crystals, Phil. Mag. 15, pages 567–586.

    Article  Google Scholar 

  • Lin, I.-H., and Thomson, R. (1986). Cleavage, dislocation emission, and shielding for cracks under general loading, Acta Met., 34:187–206.

    Article  Google Scholar 

  • Michot, G., and George, A. (1986). Dislocation emission from cracks — observations by x-ray topography in silicon, Scripta Met., 20:1495–1500.

    Article  Google Scholar 

  • Mohan, R, Ortiz, M and Shih, C. F. (1991). Crack-tip fields in ductile single crystals and bicrystals, In Lowe, T. C., Rollett, A. D., Follansbee, P. S. and Daehn, G. S., editors, Modeling the Deformation of Crystalline Solids, TMS, pages 481–498.

    Google Scholar 

  • Nabarro, F. R. N. (1947). Dislocations in a simple cubic lattice, Proc. Phys. Soc., 59:256–272.

    Article  Google Scholar 

  • Ohr, S. M. (1985). An electron microscope study of crack tip deformation and its impact on the dislocation theory of fracture, Mat. Sci. and Engr., 72:1–35.

    Article  Google Scholar 

  • Ohr, S. M. (1986). Electron microscope studies of dislocation emission from cracks, Scripta MetalL, 20:1501–1506.

    Article  Google Scholar 

  • Paxton, A. T., Gumbsch, P. and Methfessel, M. (1991). A quantum mechanical calculation of the theoretical strength of metals, Phil. Mag. Lett., 63:267–274.

    Article  Google Scholar 

  • Peierls, R. E. (1940). The size of a dislocation, Proc. Phys. Soc., 52:34–37.

    Article  Google Scholar 

  • Rice, J. R. (1968a). A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech., 35:379–386.

    Google Scholar 

  • Rice, J. R. (1968b). Mathematical analysis in the mechanics of fracture, Ch. 3 of Liebowitz, H., editor, Fracture: An Advanced Treatise (vol. 2, Mathematical Fundamentals), Academic Press, NY, pages 191–311.

    Google Scholar 

  • Rice, J. R. (1985). Conserved integrals and energetic forces, In Bilby, B. A., Miller, K. J. and Willis, J. R., Fundamentals of Deformation and Fracture (Eshelby Memorial Symposium), Cambridge University Press, pages 33–56.

    Google Scholar 

  • Rice, J. R. (1987). Mechanics of brittle cracking of crystal lattices and interfaces, In Latanision, R. M. and Jones, R. H., editors, Chemistry and Physics of Fracture, Martinus Nijhoff Publishers, Dordrecht, pages 23–43.

    Google Scholar 

  • Rice, J. R. (1988). Elastic fracture mechanics concepts for interfacial cracks, In J. Appl. Mech., 55:98–103.

    Article  Google Scholar 

  • Rice, J. R. (1992). Dislocation nucleation from a crack tip: an analysis based on the Peierls concept, to be published in J. Mech. Phys. Solids, 40:239–271.

    Article  Google Scholar 

  • Rice J. R., Suo, Z. and Wang, J.-S. (1990). Mechanics and thermodynamics of brittle interfacial failure in bimaterial systems, In Rühle, M., Evans, A. G., Ashby, M. F. and Hirth, J. P., editors, Metal-Ceramic Interfaces, Pergamon Press, Oxford, pages 269–294.

    Google Scholar 

  • Rice, J. R., and Thomson, R. M. (1974). Ductile vs. brittle behavior of crystals, Phil. Mag., 29:73–97.

    Article  Google Scholar 

  • Rice, J. R., and Wang, J.-S. (1989). Embrittlement of interfaces by solute segregation, Mat. Sci. and Engr., A107:23–40.

    Article  Google Scholar 

  • Saeedvafa, M. (1991). Orientation dependence of fracture in copper bicrystals with symmetric tilt boundaries, submitted to Mech. Mat.

    Google Scholar 

  • Schoeck, G. (1991). Dislocation emission from crack tips, Phil. Mag., 63:111–120.

    Article  Google Scholar 

  • Stroh, A. H. (1958). Dislocations and cracks in anisotropic elasticity, Phil. Mag. 3:625–646.

    Article  MathSciNet  MATH  Google Scholar 

  • Suo, Z. (1989). Mechanics of interface fracture, Ph.D. Thesis, Div. of Applied Sciences, Harvard University, Cambridge, MA, USA.

    Google Scholar 

  • Sun, Y. (1991). Unpublished work, on EAM fits for a-Fe, Al, and Ni.

    Google Scholar 

  • Sun, Y., Beltz, G. E. and Rice, J. R. (1992). Research in progress, on embedded atom models as a basis for estimating normal stress effects in dislocation nucleation.

    Google Scholar 

  • Sun, Y., and Rice, J. R. (1992). Research in progress, on the anisotropic elastic formulation of dislocation nucleation.

    Google Scholar 

  • Sun, Y., Rice, J. R. and Truskinovsky, L. (1991). Dislocation nucleation versus cleavage in Ni3Al and Ni, In Johnson, L. A., Pope, D. T. and Stiegler, J. O., editors, High-Temperature Ordered Intermetallic Alloys, Materials Research Society, 213:243–248.

    Google Scholar 

  • Tyson, W. R. (1975). Surface energies of solid metals, Canadian Metal-lurgical Quarterly, 14:307–314.

    Google Scholar 

  • Vitek, V. (1968). Intrinsic stacking faults in body-centered cubic crystals, Phil. Mag., 18:773–786.

    Article  Google Scholar 

  • Vitek, V., Lejcek, L. and Bowen, D. K. (1972). On the factors controlling the structure of dislocation cores in bcc crystals, In Gehlen, P. C., Beeler, J. R. and Jaffee, R. I., editors, Interatomic Potentials and Simulation of Lattice Defects, Plenum Press, New York, pages 493–508.

    Google Scholar 

  • Wang, J.-S., and Anderson, P. M. (1991). fVacture behavior of embrittled fee metal bicrystals and its misorientation dependence, Acta Met., 39:779–789.

    Article  Google Scholar 

  • Weertman, J. (1981). Crack tip blunting by dislocation pair creation and separation, Phil. Mag., 43:1103–1123.

    Article  Google Scholar 

  • Willis, J. R. (1967). A comparison of the fracture criteria of Griffith and Barenblatt, J. Mech. Phys. of Solids, 15:151–162.

    Article  Google Scholar 

  • Yamaguchi, M., Vitek, V. and Pope, D. (1981). Planar faults in the lattice, stability and structure, Phil. Mag., 43, 1027–1044.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Rice, J.R., Beltz, G.E., Sun, Y. (1992). Peierls Framework for Dislocation Nucleation from a Crack Tip. In: Argon, A.S. (eds) Topics in Fracture and Fatigue. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2934-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2934-6_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7726-2

  • Online ISBN: 978-1-4612-2934-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics