Advertisement

Deconvolution in Optical Astronomy. A Bayesian Approach

  • R. Molina
  • B. D. Ripley
Part of the Lecture Notes in Statistics book series (LNS, volume 74)

Abstract

We describe in this work how the Bayesian paradigm can be applied to a deconvolution problem in optical astronomy. The use of robust statistics in this process is also discussed.

Keywords

Prior Distribution Point Spread Function Globular Cluster Atmospheric Motion Deconvolved Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Buonanno, R., Buscema, G., Corsi, C.E.; Ferraro, I. and Iannicola, G. 1983. Automated photographic photometry of stars in globular clusters. Astron. Astrophys., 126, 126–278.Google Scholar
  2. [2]
    Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J. and Stahel, W.A. 1986. Robust Statistics: The Approach Based on Influence Functions. Wiley.Google Scholar
  3. [3]
    Huber, P.J. 1981. Robust Statistics. Wiley.Google Scholar
  4. [4]
    Moffat, A.F.J. 1969. A theoretical investigation of focal stellar images in the photographic emulsion and application to photographic photometry. Astrom. Astrophys., 3, 455–462.Google Scholar
  5. [5]
    Molina, R., Pérez de la Blanca, N. and Ripley, B.D. 1989. Statistical restoration of astronomical images. In Di Gesu, V.D., Scarsi, L., Crane, P. and Friedman, J.H. Eds. Data Analysis in Astronomy III, Plenum Publishing Corporation,. 75–82.Google Scholar
  6. [6]
    Molina, R. and Ripley, B.D. 1989. Using spatial models as priors in image analysis. J. Appl. Statist, 16, 193–206.CrossRefGoogle Scholar
  7. [7]
    Molina, R., del Olmo, A., Perea, J. and Ripley, B.D. 1990. Bayesian deconvolution in optical astronomy. Submitted to Astrom. J.Google Scholar
  8. [8]
    Ripley, B.D. 1981. Spatial Statistics. Wiley.zbMATHCrossRefGoogle Scholar
  9. [9]
    Ripley, B.D. 1988. Statistical Inference for Spatial Processes .Cambridge University Press.Google Scholar
  10. [10]
    Singleton, R.C. 1969. An algorithm for computing the mixed radii fast Fourier. IEEE Transactions on Audio and Electroacoustics, AU-17. 93–103Google Scholar
  11. [11]
    Takase, B., Kodaira, K. and Okamura, S. 1984. An Atlas of Selected Galaxies.University of Tokyo Press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • R. Molina
    • 1
  • B. D. Ripley
    • 2
  1. 1.Departamento de Ciencias de la Computación e I.A.Universidad de GranadaGranada, EspañaSpain
  2. 2.Department of StatisticsUniversity of OxfordOxfordUK

Personalised recommendations