Advertisement

A Remark on the Ergodicity of Systematic Sweep in Stochastic Relaxation

  • Chii-Ruey Hwang
  • Shuenn-Jyi Sheu
Conference paper
Part of the Lecture Notes in Statistics book series (LNS, volume 74)

Abstract

Let S be a graph with n sites and L be a level set. Let П be a Gibbs distribution on the configuration space Ω = {x|x : SL }. For any s in S, let P s denote a transition probability on Ω which is reversible w.r.t П and changes only the level of a configuration at site s with positive probability. A systematic sweep σ is a bijection from {1,…,n} to S. We study the ergodicity of the transition matrix P σ=P σ(1)P σ(n).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Amit and U. Grenander, Compare sweeping strategies for stochastic relaxation, Div. Appl. Math. Brown Univ. (1989).Google Scholar
  2. 2.
    P. Barone and A. Frigessi, Improving stochastic relaxation for Gaussian random fields, Probab. in the Engineering and Inform. Sci. 4 (1990), 369–389.zbMATHGoogle Scholar
  3. 3.
    A. Frigessi, C.-R. Hwang, S.-J. Sheu and P. Di Stefano, Convergence rates of the Gibbs sampler, the Metropolis algorithm, and other single-site updating dynamics, TR, Inst. Math., Academia Sinica, Taipei (1990).Google Scholar
  4. 4.
    D. Geman, Random Fields and Inverse Problems in Imaging, Lecture Notes in Mathematics 1427, Springer-Verlag, 1990.Google Scholar
  5. 5.
    S. Geman and D. Geman, Stochastic relaxation, Gibbs distribution, and the Baysian restoration of images, IEEE Trans. PAMI 6 (1984), 721–741.zbMATHCrossRefGoogle Scholar
  6. 6.
    U. Grenander, Advances in pattern theory, Ann. Statist. 17 (1989), 1–30.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Chii-Ruey Hwang
    • 1
  • Shuenn-Jyi Sheu
    • 1
  1. 1.Institute of MathematicsAcademia SinicaTaipeiTaiwan

Personalised recommendations