Skip to main content

Gonadotropin Releasing Hormone and Its Actions

  • Conference paper
Modes of Action of GnRH and GnRH Analogs

Part of the book series: Serono Symposia, USA ((SERONOSYMP))

  • 137 Accesses

Abstract

Gonadotropin releasing hormone plays a central role in regulating the reproductive process. Since isolation of this decapeptide and identification of its structure almost twenty years ago, our understanding of the neural control of reproduction and neuroendocrinology as a whole has experienced tremendous growth. Analogs of GnRH are now being used clinically to treat precocious puberty in children, endometriosis, polycystic ovarian disease, and two of the most prevalent steroid-dependent neoplasia, prostate cancer and breast cancer. In addition, GnRH and its analogs have proven useful in enhancing the reproductive efficiency of animals produced for both food and fiber. Clearly, basic research into the physiology and pharmacology of GnRH can be regarded as particularly successful in light of the relatively short time-span from basic studies to practical utility. In addition to the direct clinical applications of GnRH, the study of this hormone has contributed to our understanding of the mechanisms and pattern of hormone release, as well as the mechanisms by which responsiveness of target glands are regulated. Therefore, studies on GnRH have spanned the many areas of physiology, pharmacology, endocrinology, reproductive biology, cellular biology, and molecular biology.

Adapted, with permission, from The Stevenson Lecture (Can J Physiol Pharmacol 1991). Supported by NIH Grant HD19899. Dr. Braden is supported by a Carver Fellowship of the University of Iowa College of Medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yang-Feng TL, Seeburg PH, Francke U. Human luteinizing hormone-releasing hormone gene (LHRH) is located on short arm of chromosome 8 (region 8p11.2-p21). Somatic Cell Mol Genet 1986; 12: 95–100.

    Article  CAS  Google Scholar 

  2. Seeburg PH, Adelson JP. Characterization of cDNA for precursor of human luteinizing hormone releasing hormone. Nature 1984; 311: 666–8.

    Article  PubMed  CAS  Google Scholar 

  3. Adelman JP, Mason AJ, Hayflick JS, Seeburg PH. Isolation of the gene and hypothalamic cDNA for the common precursor of gonadotropin-releasing hormone and prolactin-inhibiting factor in human and rat. Proc Natl Acad Sci USA 1986; 83: 177–83.

    Article  Google Scholar 

  4. Seeburg PH, Mason AJ, Stewart TA, Nikolics K. The mammalian GnRH gene and its pivotal role in reproduction. Recent Prog Horm Res 1987; 43: 69–91.

    PubMed  CAS  Google Scholar 

  5. Mason AJ, Hayflick JS, Zoeller T, et al. Truncating the gonadotropin releasing hormone gene is responsible for hypogonadism in the hpg mouse. Science 1986; 234: 1366–71.

    Article  PubMed  CAS  Google Scholar 

  6. Schally AV, Arimura A, Baba Y, et al. Isolation and properties of the FSH and LH-releasing hormone. Biochem Biophys Res Commun 1971; 43: 393–9.

    Article  PubMed  CAS  Google Scholar 

  7. Matsuo J, Baba Y, Nair RMG, Arimura A, Schally AV. Structure of the porcine LH- and FSH-releasing hormone: I. The proposed amino acid sequence. Biochem Biophys Res Commun 1971; 43: 1334–9.

    Article  PubMed  CAS  Google Scholar 

  8. Burgus R, Butcher M, Amoss M, et al. Primary structure of the ovine hypothalamic luteinizing hormone-releasing factor (LRF). Proc Natl Acad Sci USA 1972; 69: 278–82.

    Article  PubMed  CAS  Google Scholar 

  9. King JA, Millar RP. Structure of chicken hypothalamic luteinizing hormone-releasing hormone: I. Structural determination on partially purified material. J Biol Chem 1982; 257: 10722–8.

    PubMed  CAS  Google Scholar 

  10. King JA, Millar R. Structure of chicken hypothalamic luteinizing hormone-releasing hormone: II. Isolation and characterization. J Biol Chem 1982; 257: 10729–32.

    PubMed  CAS  Google Scholar 

  11. Miyamoto K, Hasegawa Y, Nomura M, Igarashi M, Kangawa K, Matsuo H. Identification of the second gonadotropin-releasing hormone in chicken hypothalamus: evidence that gonadotropin secretion is probably controlled by two distinct gonadotropin-releasing hormones in avian species. Proc Natl Acad Sci USA 1984; 81: 3874–8.

    Article  PubMed  CAS  Google Scholar 

  12. Sherwood NM, Eiden L, Brownstein M, Spiess J, Rivier J, Vale WW. Characterization of a teleost gonadotropin-releasing hormone. Proc Natl Acad Sci USA 1983; 80: 2794–8.

    Article  PubMed  CAS  Google Scholar 

  13. Sherwood NM, Sower SA, Marshak DR, Fraser BA, Brownstein MJ. Primary structure of gonadotropin-releasing hormone from lamprey brain. J Biol Chem 1986; 261: 4812–41.

    PubMed  CAS  Google Scholar 

  14. Sherwood NM. Evolution of a neuropeptide family: gonadotropin-releasing hormone. Am Zool 1986; 26: 1041–54.

    CAS  Google Scholar 

  15. Millar RP, King JA. Evolution of gonadotropin-releasing hormone: multiple usage of a peptide. NIPS 1988; 3: 49–53.

    CAS  Google Scholar 

  16. Karten MJ, Rivier JE. Gonadotropin-releasing hormone analog design: structure-function studies toward the development of agonists and antagonists: rationale and perspective. Endocr Rev 1986; 7: 44–66.

    Article  PubMed  CAS  Google Scholar 

  17. Monahan MW, Amoss MS, Anderson HA, Vale W. Synthetic analogs of the hypothalamic luteinizing hormone factor with measured agonist or antagonist properties. Biochemistry 1973; 12: 4616–20.

    Article  PubMed  CAS  Google Scholar 

  18. Coy DH, Seprodi J, Vilchez-Martinez JA, Pedroza E, Gardner J, Schally AV. Structure function studies and prediction of conformational requirements for LH-RH. In: Collin R, Barbeau A, Ducharme JR, Rockefort JG, eds. Central nervous system effects of hypothalamic hormones and other peptides. New York: Raven Press, 1979: 317–23.

    Google Scholar 

  19. Nikolics K, Coy DH, Vilchez-Martinez JA, Coy EJ, Schally AV. Synthesis and biological activity of position 1 analogs of LH-RH. Int J Pept Protein Res 1977; 9: 57–62.

    Article  PubMed  CAS  Google Scholar 

  20. Momany FA. Conformational energy analysis of the molecule, luteinizing hormone-releasing hormone: I. Native decapeptide. J Am Chem Soc 1975; 98: 2990–6.

    Article  Google Scholar 

  21. Fujino M, Kobayashi S, Obayashi M, et al. Structure-activity relationships in the C-terminal part of luteinizing hormone releasing hormone (LH-RH). Biochem Biophys Res Commun 1972; 49: 863–9.

    Article  PubMed  CAS  Google Scholar 

  22. Fujino M, Fukuda T, Shinagawa S, Kobayashi S, Yamazaki I, Nakayama R. Synthetic analogs of luteinizing hormone releasing hormone (LH-RH) substituted in position 6 and 10. Biochem Biophys Res Commun 1974; 60: 406–13.

    Article  PubMed  CAS  Google Scholar 

  23. Conn PM, Rogers DC, Seay S, et al. Receptor-effector coupling in the pituitary gonadotrope. In: McKerns KW, Naor Z, eds. Biochemical endocrinology. New York: Plenum Press, 1984: 153–73.

    Google Scholar 

  24. Hook WA, Karten M, Siraganian RP. Histamine release by structural analogs of LHRH [Abstract]. Fed Proc 1985; 44: 1323 (abstract #5336).

    Google Scholar 

  25. Haviv F, Palabrica CA, Bush EN, et al. Active reduced size hexapeptide analogues of luteinizing hormone-releasing hormone. J Med Chem 1989; 32: 2340–4.

    Article  PubMed  CAS  Google Scholar 

  26. Bennett HPJ, McMartin C. Peptide hormones and their analogues: distribution, clearance from the circulation, and inactivation in vivo. Pharmacol Rev 1979; 30: 247–92.

    Google Scholar 

  27. Griffiths EC, Kelly AJ. Mechanism of inactivation of hypothalamic regulatory hormones. Mol Cell Endocrinol 1979; 14: 3–17.

    Article  PubMed  CAS  Google Scholar 

  28. Horsthemke B, Bauer K. Substrate specificity of an adenohypophyseal endopeptidase capable of hydrolyzing luteinizing hormone-releasing hormone: preferential cleavage of peptide bonds involving the carboxyl terminus of hydrophobic and basic amino acids. Biochemistry 1982; 21: 1033–6.

    Article  PubMed  CAS  Google Scholar 

  29. Tate SS. Purification and properties of a bovine brain thyrotropin-releasingfactor deamidase, a post proline cleaving enzyme of limited specificity. Eur J Biochem 1981; 118: 17–23.

    Article  PubMed  CAS  Google Scholar 

  30. Knisatschek H, Bauer K. Characterization of “thyroliberin deaminating enzyme” as a post-proline-cleaving enzyme. J Biol Chem 1979; 254: 10936–43.

    PubMed  CAS  Google Scholar 

  31. Horsthemke B, Bauer K. Characterization of a nonchymotrypsin-like endopeptidase from anterior pituitary that hydrolyzes luteinizing hormone-releasing hormone at the tyrosyl-glycine and histidyl-tryptophan bonds. Biochemistry 1981; 19: 2867–73.

    Article  Google Scholar 

  32. Handelsman DJ, Swerdloff RS. Pharmacokinetics of gonadotropin-releasing hormone and its analogs. Endocr Rev 1986; 7: 95–105.

    Article  PubMed  CAS  Google Scholar 

  33. Coy DH, Vilchez-Martinez JA, Coy EJ, Schally AV. Analogs of luteinizing hormone-releasing hormone with increased biological activity produced by D-amino acid substitutions in position 6. J Med Chem 1976; 19: 423–5.

    Article  PubMed  CAS  Google Scholar 

  34. Coy DH, Coy EJ, Schally AV, Vilchez-Martinez JA, Hirotsu Y, Arimura A. Synthetic and biological properties of [D-Ala-6-DES-Gly-NH2–10]-LHRH ethylamide, a peptide with greatly enhanced LH- and FSH-releasing activity. Biochem Biophy Res Commun 1974; 57: 335–40.

    Article  CAS  Google Scholar 

  35. Vilchez-Martinez JA, Coy DH, Arimura A, Coy EJ, Hirotsu Y, Schally AV. Synthesis and biological properties of [Leu-6]-LH-RH and [D-Leu-6, DES Gly NH2-10]-LH-RH ethylamide. Biochem Biophys Res Commun 1974; 59: 1226–32.

    Article  PubMed  CAS  Google Scholar 

  36. Nestor JJ, Ho TL, Tahilramani R, McRae GI, Vickery BH. Long acting LHRH agonists and antagonists. In: Labri F, Belanger A, Dupont A, eds. LHRH and its analogues: basic and clinical aspects. Amsterdam: Excerpta Medica, 1984: 24–35.

    Google Scholar 

  37. Danforth DR, Gordon K, Leal JA, Williams RF, Hodgen GD. Extended presence of antide (Nal-Lys GnRH antagonist) in circulation: prolonged duration of gonadotropin inhibition may derive from antide binding to serum proteins. J Clin Endocrinol Metab 1990; 70: 554–6.

    Article  PubMed  CAS  Google Scholar 

  38. Clayton RN, Harwood JP, Catt KJ. Gonadotropin-releasing hormone analogue binds to luteal cells and inhibits progesterone production. Nature 1979; 282: 90–2.

    Article  PubMed  CAS  Google Scholar 

  39. Jones PBC, Conn PM, Marian J, Hsueh AJW. Binding of gonadotropinreleasing hormone agonist to rat ovarian granulosa cells. Life Sci 1980; 27: 2125–32.

    Article  PubMed  CAS  Google Scholar 

  40. Latouche J, Crumeyrolle-Arias M, Jordon D, et al. GnRH receptors in human granulosa cells: anatomical localization and characterization by autoradiographic study. Endocrinology 1989; 125: 1739–41.

    Article  PubMed  CAS  Google Scholar 

  41. Brown JL, Reeves JJ. Absence of specific luteinizing hormone releasing hormone receptors in ovine, bovine or porcine ovaries. Biol Reprod 1983; 29: 1179–82.

    Article  PubMed  CAS  Google Scholar 

  42. Eidne KA, Hendricks DT, Millar RP. Demonstration of a 60K molecular weight luteinizing hormone-releasing hormone receptor in solubilized adrenal membrane by a ligand-immunoblotting technique. Endocrinology 1985; 116: 1792–5.

    Article  PubMed  CAS  Google Scholar 

  43. Eidne KA, Flanagan CA, Millar RP. Gonadotropin releasing hormone binding sites in human breast carcinoma. Science 1985; 229: 989–91.

    Article  PubMed  CAS  Google Scholar 

  44. Fekete M, Zalanti A, Schally AV. Presence of membrane binding sites for [D-Trp6]-luteinizing hormone-releasing hormone in experimental pancreatic cancer. Cancer Lett 1989; 45: 87–91.

    Article  PubMed  CAS  Google Scholar 

  45. Reubi JC, Palcios JM, Maurer R. Specific luteinizing-hormone-releasing hormone receptor binding sites in hippocampus and pituitary: an autoradiographical study. Neuroscience 1987; 21: 847–56.

    Article  PubMed  CAS  Google Scholar 

  46. Jennes L, Dalati B, Conn PM. Distribution of gonadotropin releasing hormone agonist binding sites in the rat central nervous system. Brain Res 1988; 452: 156–64.

    Article  PubMed  CAS  Google Scholar 

  47. Jennes L, Janovick J, Braden T, Conn PM. Gonadotropin releasing hormone binding sites in rat hippocampus: different structure/binding relationships compared to the anterior pituitary. Mol Cell Neurosci 1990; 1: 121–7.

    Article  PubMed  CAS  Google Scholar 

  48. Moss RL, McCann S. Induction of mating behavior in rats by luteinizing hormone-releasing hormone. Science 1973; 181: 177–9.

    Article  PubMed  CAS  Google Scholar 

  49. Pfaff DW. Luteinizing hormone-releasing factor potentiates lordosis behavior in hypophysectomized ovariectomized female rats. Science 1973; 182: 1148–9.

    Article  PubMed  CAS  Google Scholar 

  50. Hsueh AJW, Jones PB. Extrapituitary actions of gonadotropin-releasing hormone. Endocr Rev 1981; 2: 437–61.

    Article  PubMed  CAS  Google Scholar 

  51. Marian J, Conn PM. Subcellular localization of the receptor for gonadotropin-releasing hormone in pituitary and ovarian tissue. Endocrinology 1983; 112: 104–12.

    Article  PubMed  CAS  Google Scholar 

  52. Hazum E. GnRH-receptor of rat pituitary is a glycoprotein: differential effect of neuroaminidase and lectins on agonists and antagonists binding. Mol Cell Endocrinol 1982; 26: 217–22.

    Article  PubMed  CAS  Google Scholar 

  53. Schvartz I, Hazum E. Tunicamycin and neuraminidase effects on luteinizing hormone (LH)-releasing hormone binding and LH release from rat pituitary cells in culture. Endocrinology 1985; 116: 2341–6.

    Article  PubMed  CAS  Google Scholar 

  54. Hazum E, Garritsen A, Keinan D. Role of lipids on gonadotropin releasing hormone agonist and antagonist binding to rat pituitary. Biochem Biophys Res Commun 1982; 105: 8–13.

    Article  PubMed  CAS  Google Scholar 

  55. Keinan D, Hazum E. Mapping of gonadotropin releasing hormone receptor binding site. Biochemistry 1985; 24: 7728–32.

    Article  PubMed  CAS  Google Scholar 

  56. Hazum E. Binding properties of solubilized gonadotropin releasing hormone receptor: role of carboxylic groups. Biochemistry 1987; 26: 7011–4.

    Article  PubMed  CAS  Google Scholar 

  57. Perrin MH, Haas Y, Porter J, Rivier J, Vale W. The gonadotropin-releasing hormone pituitary receptor interacts with a guanosine triphosphate binding protein: differential effects of guanyl nucleotides on agonist and antagonist binding. Endocrinology 1989; 124: 798–804.

    Article  PubMed  CAS  Google Scholar 

  58. Perrin MM, Haas Y, Rivier JE, Vale WW. Solubilization of the gonadotropin-releasing hormone receptor from bovine pituitary plasma membranes. Endocrinology 1983; 112: 1538–40.

    Article  PubMed  CAS  Google Scholar 

  59. Hazum E, Schvartz I, Popliker M. Production and characterization of antibodies to gonadotropin-releasing hormone receptors. J Biol Chem 1987; 262: 531–4.

    PubMed  CAS  Google Scholar 

  60. Iwashita M, Hirota J, Izumi S-I, Chen H-C, Catt KJ. Solubilization and characterization of the rat pituitary gonadotrophin-releasing hormone receptor. J Mol Endocrinol 1988; 1: 187–96.

    Article  PubMed  CAS  Google Scholar 

  61. Ogier SA, Mitchell R, Fink G. Solubilization of a large molecular weight form of the rat LHRH receptor. J Endocrinol 1987; 115: 151–9.

    Article  PubMed  CAS  Google Scholar 

  62. Hazum E. Photoaffinity labeling of luteinizing hormone receptor of rat pituitary membrane preparations. Endocrinology 1981; 109: 1281–3.

    Article  PubMed  CAS  Google Scholar 

  63. Huckle WR, Hawes BE, Conn PM. Protein kinase C-mediated gonadotropin releasing hormone sequestration is associated with uncoupling of phosphoinositide turnover hydrolysis. J Biol Chem 1989; 264: 8619–26.

    PubMed  CAS  Google Scholar 

  64. Conn PM, Venter JC. Radiation inactivation (target size analysis) of the gonadotropin-releasing hormone receptor: evidence for a high molecular weight complex. Endocrinology 1985; 116: 1324–6.

    Article  PubMed  CAS  Google Scholar 

  65. Hazum E, Schvartz I, Waksman Y, Keinan D. Solubilization and purification of rat pituitary gonadotropin-releasing hormone receptor. J Biol Chem 1986; 261: 13043–8.

    PubMed  CAS  Google Scholar 

  66. Eidne KA, McNiven AI, Taylor PL, et al. Functional expression of rat pituitary gonadotropin-releasing hormone receptors in Xenopus oocytes. J Mol Endocrinol 1988; 1: R9 - R12.

    Article  PubMed  CAS  Google Scholar 

  67. Yoshida S, Plant S, Taylor PL, Eidne KA. Chloride channels mediate the response to gonadotropin-releasing hormone (GnRH) in Xenopus oocytes injected with rat anterior pituitary mRNA. Mol Endocrinol 1989; 3: 195360.

    Google Scholar 

  68. Sealfon SC, Gillo B, Mundomattom S, et al. Gonadotropin releasing hormone receptor expression in Xenopus oocytes. Mol Endocrinol 1990; 4: 119–24.

    Article  PubMed  CAS  Google Scholar 

  69. Clayton RN, Solano AR, Garcia-Vila A, Dufau ML, Catt KJ. Regulation of pituitary receptors for gonadotropin releasing hormone during the rat estrous cycle. Endocrinology 1980; 107: 699–706.

    Article  PubMed  CAS  Google Scholar 

  70. Savoy-Moore RT, Schwartz NB, Duncan JA, Marshall JC. Pituitary gonadotropin-releasing hormone receptors during the rat estrous cycle. Science 1980; 209: 942–4.

    Article  PubMed  CAS  Google Scholar 

  71. Adams TE, Spies HG. Binding characteristics of gonadotropin-releasing hormone receptors throughout the estrous cycle of the hamster. Endocrinology 1981; 108: 2245–53.

    Article  PubMed  CAS  Google Scholar 

  72. Marian J, Cooper RL, Conn PM. Regulation of the rat pituitary gonadotropin-releasing hormone receptor. Mol Pharmacol 1981; 19: 339–405.

    Google Scholar 

  73. Crowder ME, Nett TM. Pituitary content of gonadotropins and receptors for gonadotropin-releasing hormone (GnRH) and hypothalamic content of GnRH during the periovulatory period of the ewe. Endocrinology 1984; 114: 234–9.

    Article  PubMed  CAS  Google Scholar 

  74. Nett TM, Cermak D, Braden T, Manns J, Niswender GD. Pituitary receptors for GnRH and estradiol, and pituitary content of gonadotropins in beef cows: I. Changes during the estrous cycle. Dom Anim Endocrinol 1987; 4: 123–32.

    Article  CAS  Google Scholar 

  75. Conn PM, Rogers DC, Seay SG. Biphasic regulation of the gonadotropinreleasing hormone receptor by receptor microaggregation and intracellular Ca2+ levels. Mol Pharmacol 1984; 25: 51–5.

    PubMed  CAS  Google Scholar 

  76. Young LS, Naik SI, Clayton RN. Adenosine 3’,5’-monophosphate derivatives increase gonadotropin-releasing hormone receptors in cultured pituitary cells. Endocrinology 1984; 114: 2114–22.

    Article  PubMed  CAS  Google Scholar 

  77. Young LS, Naik SI, Clayton RN. Pituitary gonadotrophin-releasing hormone receptor up-regulation in vitro: dependence on calcium and micro-tubule function. J Endocrinol 1985; 107: 49–56.

    Article  PubMed  CAS  Google Scholar 

  78. Young LS, Naik SI, Clayton RN. Increased gonadotrophin releasing hormone receptors on pituitary gonadotrophs: effect on subsequent LH secretion. Mol Cell Endocrinol 1985; 41: 69–78.

    Article  PubMed  CAS  Google Scholar 

  79. Naor Z, Clayton RN, Catt KJ. Characterization of gonadotropin-releasing hormone receptors in cultured rat pituitary cells. Endocrinology 1980; 107: 1144–52.

    Article  PubMed  CAS  Google Scholar 

  80. Wise ME, Nieman D, Stewart J, Nett TM. Effect of number of receptors for gonadotropin-releasing hormone on the release of luteinizing hormone. Biol Reprod 1984; 31: 1007–13.

    Article  PubMed  CAS  Google Scholar 

  81. Clarke IJ, Cummins JT, Crowder ME, Nett TM. Pituitary receptors for gonadotropin-releasing hormone in relation to changes in pituitary and plasma gonadotropins in ovariectomized hypothalamo/pituitary-disconnected ewes: II. A marked rise in receptor number during the acute feedback effects of estradiol. Biol Reprod 1988; 39: 349–54.

    Article  PubMed  CAS  Google Scholar 

  82. Gregg DW, Nett TM. Direct effects of estradio1–17β on the number of gonadotropin-releasing hormone receptors in the ovine pituitary. Biol Reprod 1989; 40: 288–93.

    Article  PubMed  CAS  Google Scholar 

  83. Laws SC, Beggs MJ, Webster JC, Miller WL. Inhibin increases and progesterone decreases receptors for gonadotropin-releasing hormone in ovine pituitary culture. Endocrinology 1990; 127: 373–80.

    Article  PubMed  CAS  Google Scholar 

  84. Laws SC, Webster JC, Miller WL. Estradiol alters the effectiveness of gonadotropin-releasing hormone (GnRH) in ovine pituitary cultures: GnRH receptors versus responsiveness to GnRH. Endocrinology 1990; 127: 381–6.

    Article  PubMed  CAS  Google Scholar 

  85. Wang QF, Farnworth PG, Findlay JK, Burger HG. Effect of 31K bovine inhibin on the specific binding of gonadotropin-releasing hormone to rat anterior pituitary cells in culture. Endocrinology 1988; 123: 2161–6.

    Article  PubMed  CAS  Google Scholar 

  86. Wang QF, Farnworth PG, Findlay JK, Burger HG. Inhibitory effect of pure 31-kilodalton bovine inhibin on gonadotropin-releasing hormone (GnRH)induced up-regulation of GnRH binding sites in cultured rat anterior pituitary cells. Endocrinology 1989; 124: 363–8.

    Article  PubMed  CAS  Google Scholar 

  87. Braden TD, Farnworth PG, Burger HG, Conn PM. Regulation of the synthetic rate of gonadotropin-releasing hormone receptors in rat pituitary cell cultures by inhibin. Endocrinology 1990; 127: 2387–92.

    Article  PubMed  CAS  Google Scholar 

  88. Conn PM, Rogers DC, Stewart JM, Niedal J, Sheffield T. Conversion of a gonadotropin-releasing hormone antagonist to an agonist. Nature 1982; 296: 653–5.

    Article  PubMed  CAS  Google Scholar 

  89. Conn PM. Ligand dimerization: a technique for assessing receptor-receptor interactions. Methods Enzymol 1983; 103: 49–58.

    Article  PubMed  CAS  Google Scholar 

  90. Pelletier G, Dube D, Guy J, Sequin C, Lefebvre FA. Binding and internalization of a luteinizing hormone-releasing hormone agonist by rat gonadotrophic cells: a radiographic study. Endocrinology 1982; 111: 1068–76.

    Article  PubMed  CAS  Google Scholar 

  91. Duello TM, Nett TM, Farquhar MG. Fate of a gonadotropin-releasing hormone agonist internalized by rat pituitary gonadotrophs. Endocrinology 1983; 112: 1–10.

    Article  PubMed  CAS  Google Scholar 

  92. Jennes L, Stumpf WE, Conn PM. Internalization pathways of electron opaque gonadotropin-releasing hormone derivatives bound by cultured gonadotropes. Endocrinology 1983; 113: 1683–9.

    Article  PubMed  CAS  Google Scholar 

  93. Hazum E, Conn PM. Molecular mechanism of gonadotropin-releasing hormone (GnRH) action: I. The GnRH receptor. Endocr Rev 1988; 9: 379–85.

    Article  PubMed  CAS  Google Scholar 

  94. Schvartz I, Hazum E. Internalization and recycling of receptor-bound gonadotropin-releasing hormone agonist in pituitary gonadotropes. J Biol Chem 1987; 262: 17046–50.

    PubMed  CAS  Google Scholar 

  95. Jennes L, Coy D, Conn PM. Receptor-mediated uptake of GnRH agonist and antagonists by cultured gonadotropes: evidence for differential intracellular routing. Peptides 1986; 7: 459–63.

    Article  PubMed  CAS  Google Scholar 

  96. Braden TD, Hawes BE, Conn PM. Synthesis of gonadotropin-releasing hormone receptors by gonadotrope cell cultures: both preexisting receptors and those unmasked by protein kinase-C activators show a similar synthetic rate. Endocrinology 1989; 125: 1623–9.

    Article  PubMed  CAS  Google Scholar 

  97. Braden TD, Conn PM. Altered rate of synthesis of gonadotropin-releasing hormone receptors: effects of homologous hormone appear independent of extracellular calcium. Endocrinology 1990; 126: 2577–82.

    Article  PubMed  CAS  Google Scholar 

  98. Andrews WV, Staley DD, Huckle WR, Conn PM. Stimulation of luteinizing hormone (LH) release and phospholipid breakdown by guanosine triphosphate in permeabilized pituitary gonadotropes: antagonist action suggests association of a G-protein and gonadotropin-releasing hormone receptor. Endocrinology 1986; 119: 2537–46.

    Article  PubMed  CAS  Google Scholar 

  99. Waters SB, Hawes BE, Conn PM. Stimulation of luteinizing hormone release by sodium fluoride is independent of protein kinase-C activity and unaffected by desensitization to gonadotropin-releasing hormone. Endocrinology 1990; 126: 2583–91.

    Article  PubMed  CAS  Google Scholar 

  100. Borgeat P, Chavaney G, Dupont A, Labrie F, Arimura A, Schally AV. Stimulation of adenosine 3’,5’-cyclic monophosphate accumulation in anterior pituitary gland in vitro by synthetic luteinizing hormone-releasing hormone. Proc Natl Acad Sci USA 1972; 69: 2677–81.

    Article  PubMed  CAS  Google Scholar 

  101. Menon KMJ, Cuanaga KP, Azhar S. GnRH action in rat anterior pituitary gland: regulation of protein, glycoprotein and LH synthesis. Acta Endocrinol 1977; 86: 473–88.

    PubMed  CAS  Google Scholar 

  102. Adams TE, Wagner TOF, Sawyer HR, Nett TM. GnRH interactions with anterior pituitary: II. Cyclic AMP as an intracellular mediator in the GnRH activated gonadotroph. Biol Reprod 1979; 21: 735–47.

    Article  PubMed  CAS  Google Scholar 

  103. Naor Z, Koch Y, Chobsieng P, Zor U. Pituitary cyclic AMP production and mechanisms of luteinizing hormone release. FEBS Lett 1975; 58: 3 1821.

    Google Scholar 

  104. Naor Z, Zor U, Meidan R, Koch Y. Sex differences in pituitary cyclic AMP response to gonadotropin-releasing hormone. Am J Physiol 1978; 235: E37 - E41.

    PubMed  CAS  Google Scholar 

  105. Ratner A, Wilson MC, Srivastave L, Peake GT. Dissociation between LH release and pituitary cyclic nucleotide accumulation in response to synthetic LH releasing hormone in vivo. Neuroendocrinology 1976; 20: 35–42.

    Article  PubMed  CAS  Google Scholar 

  106. Rigler GL, Peake GT, Ratner A. Effect of luteinizing hormone releasing hormone on accumulation of pituitary cyclic AMP and GMP in vitro. J Endocrinol 1978; 76: 367–8.

    Article  PubMed  CAS  Google Scholar 

  107. Conn PM, Morrell DV, Dufau ML, Catt KJ. Gonadotropin-releasing hormone action in cultured pituicytes: independence of luteinizing hormone release and adenosine 3’,5’-monophosphate production. Endocrinology 1979; 104: 448–53.

    Article  PubMed  CAS  Google Scholar 

  108. Conn PM, Huckle WR, Andrews WV, McArdle CA. The molecular mechanism of action of gonadotropin releasing hormone (GnRH) in the pituitary. Recent Prog Horm Res 1987; 43: 29–68.

    PubMed  CAS  Google Scholar 

  109. Conn PM, McArdle CA, Andrews WV, Huckle WR. The molecular basis of gonadotropin releasing hormone (GnRH) action in the pituitary gonadotrope. Biol Reprod 1987; 36: 17–35.

    Article  PubMed  CAS  Google Scholar 

  110. Huckle WR, Conn PM. Molecular mechanism of gonadotropin releasing hormone action: II. The effector system. Endocr Rev 1988; 9: 387–95.

    Article  PubMed  CAS  Google Scholar 

  111. Hopkins CR, Walker AM. Calcium as a second messenger in the stimulation of luteinizing hormone secretion. Mol Cell Endocrinol 1978; 12: 189–208.

    Article  PubMed  CAS  Google Scholar 

  112. Wakabayashi K, Kamberi IA, McCann SM. In vitro response of the rat pituitary to gonadotropin releasing factors and to ions. Endocrinology 1969; 85: 1046–56.

    Article  PubMed  CAS  Google Scholar 

  113. Samli MH, Geshwind II. Some effects of energy-transfer inhibitors and of Ca2+-free and K+-enhanced media on the release of LH from the rat pituitary gland in vitro. Endocrinology 1968; 82: 225–31.

    Article  PubMed  CAS  Google Scholar 

  114. Adams TE, Nett TM. Interactions of GnRH with the pituitary: III. Role of divalent cations, microtubules and microfilaments in the GnRH activated gonadotroph. Biol Reprod 1979; 21: 1073–86.

    Article  PubMed  CAS  Google Scholar 

  115. Marian J, Conn PM. Gonadotropin releasing hormone stimulation of cultured pituitary cells requires calcium. Mol Pharmacol 16:196–201;

    Google Scholar 

  116. Stern JE, Conn PM. Perifusion of rat pituitaries: requirements of optimal GnRH-stimulated LH release. Am J Physiol 1981; 240: E504–9.

    PubMed  CAS  Google Scholar 

  117. Conn PM, Rogers DC, Sandhu FS. Alteration of the intracellular calcium level stimulated gonadotropin release from cultured rat anterior pituitary cells. Endocrinology 1979; 105: 1122–7.

    Article  PubMed  CAS  Google Scholar 

  118. Bates MD, Conn PM. Calcium mobilization in the pituitary gonadotrope: relative roles of intra-and extracellular sources. Endocrinology 1984; 115: 1380–5.

    Article  PubMed  CAS  Google Scholar 

  119. Marian J, Conn PM. The calcium requirement of GnRH-stimulated LH release is not mediated through specific action on the receptor. Life Sci 1980; 27: 87–92.

    Article  PubMed  CAS  Google Scholar 

  120. Conn PM, Kilpatrick D, Kirshner N. Ionophoretic Ca2+ mobilization in rat gonadotropes and bovine adrenomedullary cells. Cell Calcium 1980; 1: 129–33.

    Article  CAS  Google Scholar 

  121. Clapper D, Conn PM. Gonadotropin-releasing hormone stimulation of pituitary gonadotrope cells produces an increase in intracellular calcium. Biol Reprod 1985; 32: 269–78.

    Article  PubMed  CAS  Google Scholar 

  122. Chang JP, McCoy EE, Graeter J, Tasaka K, Catt KJ. Participation of voltage-dependent calcium channels in the action of gonadotropin-releasing hormone. J Biol Chem 1986; 261: 9105–8.

    PubMed  CAS  Google Scholar 

  123. Leong DA. Spatial mapping of cytosolic calcium oscillations in single gonadotropes [Abstract]. Seventy-first annual meeting of the Endocrine Society, Seattle, WA, 1989:24 (abstract #7).

    Google Scholar 

  124. Conn PM, Rogers DC, Seay SG. Structure-function relationships of calcium ion channel antagonists at the pituitary gonadotrope. Endocrinology 1983; 113: 1592–5.

    Article  PubMed  CAS  Google Scholar 

  125. Barbino A, DeMarinis L. Calcium antagonists and hormone release: II. Effects of verapamil on basal, gonadotropin-releasing hormone, and thryotropin-releasing hormone induced pituitary hormone release in normal subjects. J Clin Endocrinol Metab 1980; 51: 749–53.

    Article  Google Scholar 

  126. Veldhuis JD, Borges JLC, Drake CR, Rogal AD, Kaiser DL, Thorner MO. Divergent influences of the structurally dissimilar calcium entry blockers diltiazem and verapamil on thyrotropin-and gonadotropin-releasing hormone-stimulated anterior pituitary hormone secretion in man. J Clin Endocrinol Metab 1985; 60: 144–9.

    Article  PubMed  CAS  Google Scholar 

  127. Conn PM, Staley DD, Yasumoto T, Huckle WR, Janovick J. Homologous desensitization with gonadotropin-releasing hormone (GnRH) also diminishes gonadotrope responsiveness to maitotoxin: a role for the GnRH receptor regulated calcium ion channel in mediation of cellular desensitization. Mol Endocrinol 1987; 1: 154–9.

    Article  PubMed  CAS  Google Scholar 

  128. Mason WT, Waring DW. Electrophysiological recording from gonadotrophs: evidence for Ca2+ channels mediated by gonadotropin-releasing hormone. Neuroendocrinology 1985; 41: 258–68.

    Article  PubMed  CAS  Google Scholar 

  129. Stojilkovic SS, Izumi S, Catt KJ. Participation of voltage-sensitive calcium channels in pituitary hormone release. J Biol Chem 1988; 263: 13054–61.

    PubMed  CAS  Google Scholar 

  130. Nishizuka Y. Studies and perspectives of protein kinase C. Science 1986; 233: 305–12.

    Article  PubMed  CAS  Google Scholar 

  131. Naor Z, Zer J, Zakut H, Hermon J. Characterization of pituitary calcium-activated, phospholipid-dependent protein kinase: redistribution by gonadotropin releasing hormone. Proc Natl Acad Sci USA 1985; 82: 8203–7.

    Article  PubMed  CAS  Google Scholar 

  132. Hirota K, Hirota T, Aguilera G, Catt KJ. Hormone induced redistribution of calcium-activated phospholipid dependent protein kinase in pituitary gonadotrophs. J Biol Chem 1985; 260: 3243–6.

    PubMed  CAS  Google Scholar 

  133. McArdle CA, Conn PM. Hormone-stimulated redistribution of gonadotrope protein kinase C in vivo: dependence on Ca2+ influx. Mol Pharmacol 1986; 29: 570–6.

    PubMed  CAS  Google Scholar 

  134. Nishizuka Y. Turnover of inositol phospholipids and signal transduction. Science 1984; 225: 1365–70.

    Article  PubMed  CAS  Google Scholar 

  135. Rana RS, Hokin LE. Role of phosphoinositides in transmembrane signaling. Physiol Rev 1990; 70: 115–64.

    PubMed  CAS  Google Scholar 

  136. Berridge MJ. Inositol phosphate and diacylglycerol as second messengers. Biochem J 1984; 220: 345–60.

    PubMed  CAS  Google Scholar 

  137. Streb H, Irvine RJ, Berridge MJ, Schulz I. Release of calcium from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol 1,4,5-trisphosphate. Nature 1983; 306: 67–9.

    Article  PubMed  CAS  Google Scholar 

  138. Kuno M, Gardner P. Ion channels activated by inositol 1,4,5-trisphosphate in plasma membranes of T-lymphocytes. Nature 1987; 326: 301–4.

    Article  PubMed  CAS  Google Scholar 

  139. Andrews WV, Conn PM. Gonadotropin-releasing hormone stimulates mass changes in phosphoinositides and diacylglycerol accumulation in purified gonadotrope cell cultures. Endocrinology 1986; 118: 1148–58.

    Article  PubMed  CAS  Google Scholar 

  140. Huckle WR, Conn PM. The relationship between gonadotropin-releasing hormone-stimulated luteinizing hormone release and inositol phosphate production: studies with calcium antagonists and protein kinase C activators. Endocrinology 1987; 120: 160–9.

    Article  PubMed  CAS  Google Scholar 

  141. Conn PM, Ganong BR, Ebeling J, Staley D, Neidel JE, Bell BM. Diacylglycerols release LH: structure-activity relations reveal a role for protein kinase C. Biochem Biophys Res Commun 1985; 126: 532–9.

    Article  PubMed  CAS  Google Scholar 

  142. Harris CE, Staley D, Conn PM. Diacylglycerols and protein kinase C: potential amplifying mechanism for Ca2+ mediated gonadotropin-releasing hormone-stimulated luteinizing hormone release. Mol Pharmacol 1985; 27: 532–6.

    PubMed  CAS  Google Scholar 

  143. Naor Z, Eli Y. Synergistic stimulation of luteinizing hormone (LH) release by protein kinase C activators and Ca2+-ionophore. Biochem Biophys Res Commun 1985; 130: 848–53.

    Article  PubMed  CAS  Google Scholar 

  144. Lewis CE, Richards PSM, Moris JF. Heterogeneity of responses to LH-releasing hormone and phorbol ester among rat gonadotrophs: a study using a reverse haemolytic plaque assay for LH. J Mol Endocrinol 1989; 2: 55–63.

    Article  PubMed  CAS  Google Scholar 

  145. McArdle CA, Conn PM. The use of protein kinase C-depleted cells for investigation of the role of protein kinase C in stimulus-response coupling in the pituitary. Methods Enzymol 1989; 168: 287–301.

    Article  PubMed  CAS  Google Scholar 

  146. McArdle CA, Huckle WR, Conn PM. Phorbol esters reduce gonadotrope responsiveness to protein kinase C activators but not to Ca2+-mobilizing secretagogues: does protein kinase C mediate gonadotropin-releasing hormone action? J Biol Chem 1987; 262: 5028–35.

    PubMed  CAS  Google Scholar 

  147. Beggs MJ, Miller WL. GnRH-stimulated LH release from ovine gonadotrophs in culture is separate from phorbol ester stimulated LH release. Endocrinology 1989; 124: 667–74.

    Article  PubMed  CAS  Google Scholar 

  148. van der Merwe PA, Millar RP, Davidson JS. Calcium stimulated luteinizinghormone (lutropin) exocytosis by a mechanism independent of protein kinase C. Biochem J 1990; 268: 493–8.

    PubMed  Google Scholar 

  149. Means AR, Dedman JR. Calmodulin, an intracellular calcium receptor. Nature 1980; 285: 73–7.

    Article  PubMed  CAS  Google Scholar 

  150. Chafouleas JG, Guerriero V, Means AR. Possible regulatory roles of calmodulin and myosin light chain kinase in secretion. In: Conn PM, ed. Cellular regulation of secretion and release. New York: Academic Press, 1985; 445–58.

    Google Scholar 

  151. Conn PM, Chafouleas JG, Rogers D, Means AR. Gonadotropin-releasing hormone stimulates calmodulin redistribution in rat pituitary. Nature 1981; 292: 264–5.

    Article  PubMed  CAS  Google Scholar 

  152. Jennes L, Bronson D, Stumpf WE, Conn PM. Evidence for an association between calmodulin and membrane patches containing gonadotropinreleasing hormone-receptor complexes in cultured gonadotropes. Cell Tissue Res 1985; 239: 311–5.

    Article  PubMed  CAS  Google Scholar 

  153. Conn PM, Rogers DC, Sheffield T. Inhibition of gonadotropin-releasing hormone-stimulated luteinizing hormone release by pimozide: evidence for a site of action after calcium mobilization. Endocrinology 1981; 109: 1122–6.

    Article  PubMed  CAS  Google Scholar 

  154. Conn PM, Bates MD, Rogers DC, Seay SG, Smith WA. GnRH-receptoreffector-response coupling in the pituitary gonadotrope: a Ca2+-mediated system. In: Fotherby K, Pal SB, eds. The role of drugs and electrolytes in hormogenesis. Berlin: Walter de Gruyer, 1984: 85–103.

    Google Scholar 

  155. Wooge CH, Conn PM. Characterization of calmodulin-binding components in the pituitary gonadotrope. Mol Cell Endocrinol 1988; 56: 41–51.

    Article  PubMed  CAS  Google Scholar 

  156. Natarajan K, Ness J, Wooge CH, Janovick J, Conn PM. Specific identification and subcellular localization of three calmodulin-binding proteins in the rat gonadotrope: spectrin, caldesmon, and calcineurin. Biol Reprod 1991; 44: 43–52.

    Article  PubMed  CAS  Google Scholar 

  157. Pierce JC, Parsons TF. Glycoprotein hormones: structure and function. Annu Rev Biochem 1981; 50: 465–95.

    Article  PubMed  CAS  Google Scholar 

  158. Andrews WV, Maurer RA, Conn PM. Stimulation of rat luteinizing hormone-13 messenger RNA levels by gonadotropin releasing hormone: apparent role for protein kinase C. J Biol Chem 1988; 263: 13755–61.

    PubMed  CAS  Google Scholar 

  159. Hamernik DL, Nett TM. Gonadotropin-releasing hormone increases the amount of messenger ribonucleic acid for gonadotropins in ovariectomized ewes after hypothalamic-pituitary disconnection. Endocrinology 1988; 122: 959–66.

    Article  PubMed  CAS  Google Scholar 

  160. Lalloz MRA, Detta A, Clayton RN. Gonadotropin-releasing hormone is required for enhanced luteinizing hormone subunit gene expression in vivo. Endocrinology 1988; 122: 1681–8.

    Article  PubMed  CAS  Google Scholar 

  161. Starzec A, Counis R, Jutisz M. Gonadotropin-releasing hormone stimulates the synthesis of the polypeptide chains of luteinizing hormone. Endocrinology 1986; 119: 561–5.

    Article  PubMed  CAS  Google Scholar 

  162. Starzec A, Jutisz M, Counis R. Cyclic adenosine monophosphate and phorbol ester, like gonadotropin-releasing hormone, stimulate the biosynthesis of luteinizing hormone polypeptide chains in a nonadditive manner. Mol Endocrinol 1989; 3: 618–24.

    Article  PubMed  CAS  Google Scholar 

  163. Liu T-C, Jackson GL. Synthesis and release of luteinizing hormone in vitro by rat anterior pituitary cells: effects of gallopamil hydrochloride (D600) and pimozide. Endocrinology 1985; 117: 1608–14.

    Article  PubMed  CAS  Google Scholar 

  164. Vogel DL, Magner JA, Sherins RJ, Weintraub BD. Biosynthesis, glycosylation, and secretion of rat luteinizing hormone a-and 13-subunits: differential effects of orchidectomy and gonadotropin-releasing hormone. Endocrinology 1986; 119: 202–13.

    Article  PubMed  CAS  Google Scholar 

  165. Liu T-C, Jackson GL. Stimulation by phorbol ester and diacylglycerol of luteinizing hormone glycosylation and release by rat anterior pituitary cells. Endocrinology 1987; 121: 1589–95.

    Article  PubMed  CAS  Google Scholar 

  166. deKoning JA, van Dietan MJ, van Rees GP. Refractoriness of the pituitary gland after continuous exposure to luteinizing hormone releasing hormone. J Endocrinol 1978; 79: 311–8.

    Article  CAS  Google Scholar 

  167. Smith MA, Vale W. Desensitization to gonadotropin-releasing hormone observed in superfused pituitary cells on cytodex beads. Endocrinology 1981; 108: 752–9.

    Article  PubMed  CAS  Google Scholar 

  168. Badger TM, Loughlin JS, Nadaff PG. The luteinizing hormone-releasing hormone (LHRH)-desensitized rat pituitary: luteinizing hormone-responsiveness to LHRH in vitro. Endocrinology 1983; 112: 793–9.

    Article  PubMed  CAS  Google Scholar 

  169. Keri G, Nikolics K, Teplan I, Molnar J. Desensitization of luteinizing hormone release in cultured pituitary cells by gonadotropin-releasing hormone. Mol Cell Endocrinol 1983; 30: 109–20.

    Article  PubMed  CAS  Google Scholar 

  170. Smith WA, Conn PM. GnRH-mediated desensitization of the pituitary gonadotrope is not calcium dependent. Endocrinology 1983; 112: 408–10.

    Article  PubMed  CAS  Google Scholar 

  171. Jinnah HA, Conn PM. Gonadotropin-releasing hormone-mediated desensitization of cultured rat anterior pituitary cells can be uncoupled from luteinizing hormone release. Endocrinology 1986; 118: 2599–604.

    Article  PubMed  CAS  Google Scholar 

  172. Smith WA, Conn PM. Microaggregation of the gonadotropin-releasing hormone-receptor: relation to gonadotrope desensitization. Endocrinology 1984; 114: 553–9.

    Article  PubMed  CAS  Google Scholar 

  173. Gorospe WC, Conn PM. Agents that decrease gonadotropin-releasing hormone (GnRH) receptor internalization do not inhibit GnRH-mediated gonadotrope desensitization. Endocrinology 1987; 120: 222–9.

    Article  PubMed  CAS  Google Scholar 

  174. Gorospe WC, Conn PM. Restoration of the LH secretory response in desensitized gonadotropes. Mol Cell Endocrinol 1988; 59: 101–10.

    Article  PubMed  CAS  Google Scholar 

  175. Gorospe WC, Conn PM. Membrane fluidity regulated development of gonadotrope desensitization to GnRH. Mol Cell Endocrinol 1987; 53: 131–40.

    Article  PubMed  CAS  Google Scholar 

  176. McArdle CA, Gorospe WC, Huckle WR, Conn PM. Homologous down-regulation of gonadotropin-releasing hormone receptors and desensitization of gonadotropes: lack of dependence on protein kinase C. Mol Endocrinol 1987; 1: 420–9.

    Article  PubMed  CAS  Google Scholar 

  177. Huckle WR, McArdle CA, Conn PM. Differential sensitivity of gonadotropin-releasing hormone receptors to activators of protein kinase C: a marker for receptor activators. J Biol Chem 1988; 263: 3296–302.

    PubMed  CAS  Google Scholar 

  178. Huckle WR, Conn PM. The role of protein kinase C in pituitary gonadotropin releasing hormone action. In: Lakowski JM, Perez-Polo JR, Rassin DK, eds. Neural control of reproductive function. New York: Alan Liss, 1988: 441–6.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Braden, T.D., Conn, P.M. (1992). Gonadotropin Releasing Hormone and Its Actions. In: Crowley, W.F., Conn, P.M. (eds) Modes of Action of GnRH and GnRH Analogs. Serono Symposia, USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2916-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2916-2_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7718-7

  • Online ISBN: 978-1-4612-2916-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics