Skip to main content

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 42))

  • 387 Accesses

Abstract

Let X t be a continuous martingale starting at 0 and set \( X^\ast = \text{sup}\{\left\vert X_t \right\vert : t > 0 \} \) and \( S(X) = \sqrt{\left\langle X \right\rangle_\infty} \), where 〈Xtis the quadratic variation process at time t. We then define a measure μ on ℝ by \( \mu(E) = d\left\langle X \right\rangle_t (\{t : X_t \in E\}) \), where \( d\left\langle X \right\rangle_t \) is the Riemann-Stieltjes measure on 0,∞) associated to the nondecreasing function 〈Xt. It is known that μ is absolutely continuous with respect to Lebesgue measure so that there exists a function L(a), (called the local time), so that \( \mu(E) = \int_E L(a)da \) for every Borel set E. More generally, for any Borel function f on ℝ:

$$ \int_0^\infty f(X_t)d\left\langle X \right\rangle_t = \int_\mathbb{R} f(a)L(a)da $$
((1.1))

Take f = 1 in (1.1) and we obtain:

$$ S(X)^2 = \int_\mathbb{R}L(a)da = \int_{-X^\ast}^{X^\ast}L(a)da $$
((1.2))

where the last equality follows by noting that \( L(a) = 0 \text{ if} a \notin [-X^\ast, X^\ast] \). We now set \( L^\ast = \text{sup}\{L(a) : a \in \mathbb{R}\} \); L* is called the maximal local time. Then (1.2) trivially yields \( S(X)^2\leq 2L^\ast X^\ast \), and this, the Cauchy-Schwarz inequality, and the Burkholder-Gundy inequality: \( \left \Vert S(X) \right \Vert_p\approx \left \Vert X^\ast \right \Vert_p for\ 0< p< \infty \), then gives \( \left \Vert S(X) \right \Vert_p\leq C_p\left \Vert L\ast \right \Vert_p \text{ for} 0 < p < \infty \). The reverse inequality is more difficult and was shown by Barlow and Yor [4], [5]. In fact, even more is true. The following theorem is essentially to Bass [6] and independently, Davis [12], however, their statements of these results are different than appears here, but a careful analysis of their methods yields these results.

Partially supported by a National Science Foundation Postdoctoral Fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Bañuelos and C.N. Moore, Sharp estimates for the nontangential maximal function and the Lusin area function in Lipschitz domains, Trans. Amer. Math. Soc. 312 (1989), 641–662.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Bañuelos and C.N. Moore, Laws of the iterated logarithm, sharp good-λ inequalities and L p estimates for caloric and harmonic functions, Indiana Univ. Math. J. 38 (1989), 315–344.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Bañuelos and C.N. Moore, Distribution function inequalities for the density of the area integral, Ann. Inst. Fourier (Grenoble), to appear.

    Google Scholar 

  4. M. Barlow and M. Yor, (Semi) Martingale inequalities and local times, A. Wahrch. Verw. Gebiete 55 (1981), 237–254.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Barlow and M. Yor, Semi-martingale inequalities via the Garsia-Rodemich-Rumsey lemma, and application to local times, J. Funct. Anal. 49,2 (1982), 198–229.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Bass, L p -inequalities for functionals of Brownian motion, Séminaire de Probabilitiés XXI, Lecture notes in Math. 1247 (1987), Springer-Verlag, New York.

    Google Scholar 

  7. J. Brossard, Dénsité de l’intégrale d’aire dans R + n+1 et limites nontangentielles, Invent. Math. 93 (1988), 297–308.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Brossard and L. Chevalier, Classe LlogL et densité de l’intégrale d’aire dans R + n+1, Ann. of Math. 128 (1988), 603–618,.

    Article  MathSciNet  MATH  Google Scholar 

  9. D.L. Burkholder and R.F. Gundy, Distribution function inequalities for the area integral, Studia Math. 44 (1972), 627–544.

    MathSciNet  Google Scholar 

  10. S.Y.A. Chang, J.M. Wilson, and T.H. Wolff, Some weighted norm inequalities involving the Schrödinger operators, Comment. Math. Helv. 60 (1985), 217–246.

    Article  MathSciNet  MATH  Google Scholar 

  11. B.E.J. Dahlberg, Weighted norm inequalities for the Lusin area integral and nontangential maximal functions for harmonic functions in Lipschitz domains, Studia Math. 47 (1980), 297–314.

    MathSciNet  Google Scholar 

  12. B. Davis, On the Barlow-Yor inequalities for local time, Séminaire de Probabilitiés XXI, Lecture notes in Math 1247 (1987), Springer-Verlag, New York.

    Google Scholar 

  13. R. Fefferman, R.F. Gundy, M. Silverstein, and E.M. Stein, Inequalities for ratios of functionals of harmonic functions, Proc. Nat. Acad. Sci. U.S.A. 79 (1982), 7958–7960.

    Article  MathSciNet  MATH  Google Scholar 

  14. A.M. Garsia, E. Rodemich and H. Rumsey Jr., A real variable lemma and the continuity of paths of some Gaussian processes, Indiana Univ. Math. J. 20 (1970), 565–578.

    Article  MathSciNet  MATH  Google Scholar 

  15. R.F. Gundy, The density of the area integral, Conference on Harmonic Analysis in Honor of A. Zygmund, Beckner, W., Calderón, A.P., Fefferman, R., and Jones, P., editors, Wadsworth, Belmont, California 1983.

    Google Scholar 

  16. R.F. Gundy, Some topics in probability and analysis, CBMS #70, (1989).

    Google Scholar 

  17. R.F. Gundy and M.L. Silverstein, The density of the area integral in R + n+1, Ann. Inst. Fourier (Grenoble) 35,1 (1985), 215–229.

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Lenglart, D. Lepingle, and M. Pratelli, Présentation unifiée de certaines inéqualités de la théorie des martingales, Séminaire de probabilitiés XIV, Lecture notes in Math 784 (1980), Springer-Verlag, New York.

    Google Scholar 

  19. T. Murai and A. Uchiyama, Good-λ inequalities for the area integral and the nontangential maximal function, Studia Math. 83 (1986), 251–262.

    MathSciNet  Google Scholar 

  20. E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Moore, C.N. (1992). Some Inequalities for the Density of the Area Integral. In: Dahlberg, B., Fefferman, R., Kenig, C., Fabes, E., Jerison, D., Pipher, J. (eds) Partial Differential Equations with Minimal Smoothness and Applications. The IMA Volumes in Mathematics and its Applications, vol 42. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2898-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2898-1_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7712-5

  • Online ISBN: 978-1-4612-2898-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics