Role of Acoustics in Combustion Instability

  • A. K. Kapila
Part of the ICASE/NASA LaRC Series book series (ICASE/NASA)


This paper, intended to complement Buckmaster’s position paper on Combustion Instability, examines the role of finite-amplitude gasdynamic disturbances on selected modes of premixed combustion. The dramatic influence exerted by the disturbances on the dynamics of these systems attests to their unstable character. A need for analogous studies on non- premixed combustion is identified.


Burning Rate Lewis Number Premix Flame Premix Combustion Damkohler Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buckmaster, J. D.: Combustion instability, This volume.Google Scholar
  2. 2.
    Markstein, G. H.: Nonsteady Flame Propagation, The MacMillan Company, New York (1964).Google Scholar
  3. 3.
    Williams, F. A.: Combustion Theory, The Benjamin/Cummings Publishing Company, Menlo Park (1985).Google Scholar
  4. 4.
    Ledder, G.: Some problems from the theories of combustion and vapor explosion, Ph.D. Thesis, Rensselaer Polytechnic Institute (1990).Google Scholar
  5. 5.
    Peters, N. and Ludford, G. S. S.: The effect of pressure variations on premixed flames, Combustion Science and Technology, 34, pp. 331 – 344 (1983).CrossRefGoogle Scholar
  6. 6.
    Mcintosh, A. C.: The interaction of high-frequency low-amplitude acoustic waves with premixed flames, To appear in the Proceedings of Euromech 241, Tallinn, USSR, September 1988.Google Scholar
  7. 7.
    Mcintosh, A. C.: Pressure disturbances on different length scales interacting with conventional flames, To appear in the Proceedings of 12th ICDERS, Ann Arbor, Michigan, August 1989.Google Scholar
  8. 8.
    Clavin, P., Pelce, P. and Longting, He.: One-dimensional vibratory instability of plane flames propagating in tubes, Submitted for publication (1989).Google Scholar
  9. 9.
    J. D. Buckmaster and G. S. S. Ludford, Theory of Laminar Flames, Cambridge University Press (1982).Google Scholar
  10. 10.
    Clarke, J. F. and Cant, R. S.: Nonsteady gasdynamic effects in the induction zone behind a strong shock wave, in Progress in Aeronautics and Astronautics, 95, Dynamics of Shock Waves, Explosions and Detonations, American Institute of Aeronautics and Astronautics, New York, pp. 142–163 (1984).Google Scholar
  11. 11.
    Jackson, T. L. and Kapila, A. K.: Shock-induced thermal runaway, SIAM J. Appl. Math., 45, pp. 130 – 137 (1985).MathSciNetMATHGoogle Scholar
  12. 12.
    Clarke, J. F.: On the theoretical modelling of the interaction between a shock wave and an exploding gas mixture, College of Aeronautics Report 7801, Cranfield Institute of Technology, Cranfield, Bedford, U. K. (1978).Google Scholar
  13. 13.
    Jackson, T. L., Kapila, A. K. and Stewart, D. S.: Evolution of a reaction center in a homogeneous explosive, S.AM J. Appl. Math., 49, pp. 432 – 458 (1989).MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Dold, J. W.: Dynamic transition of a selfigniting region, in Mathematical Modelling of Combustion and Related Topics, C. M. Brauner and C. Schmidt-Laine, Eds., Martinus Nijhoff, Dordrecht, pp. 461–470 (1988).Google Scholar
  15. 15.
    Blythe P. A. and Crighton, D. G.: Shock-generated ignition, Submitted for publication (1989).Google Scholar
  16. 16.
    Kapila, A. K. and Dold, J. W.: A theoretical picture of shock- to-detonation transition in a homogeneous explosive, to appear in the Proceedings of the 9th Symposium (International) on detonation, Portland, Oregon, August 1989.Google Scholar
  17. 17.
    Dold, J. W. and Kapila, A. K.: Asymptotic analysis of detonation initiation for one-step chemistry. I: Emergence of a weak detonation, submitted for publication (1989) Google Scholar
  18. 18.
    Dold, J. W. and Kapila, A. K.: Asymptotic analysis of detonation initiation for one-step chemistry. II: From a weak structure to ZND, submitted for publication (1989).Google Scholar
  19. 19.
    Majda, A. and Rosales, R.: Nonlinear mean-field high-frequency wave interactions in the induction zone, SIAM J. Appl. Math., 47, pp. 1017 – 1039 (1987).MathSciNetADSMATHGoogle Scholar
  20. 20.
    Almgren, R., Majda, A. and Rosales, R.: Rapid initiation in condensed phases through resonant nonlinear acoustics, to appear in Physics of Fluids (1990).Google Scholar
  21. 21.
    Almgren, R.: High-frequency acoustic waves in a reacting gas, submitted for publication(1990).Google Scholar
  22. 22.
    Blythe, P. A.: Wave propagation and ignition in a combustible mixture, 17th Symposium (International) on Combustion, pp. 909 – 916 (1978).Google Scholar
  23. 23.
    Clarke, J. F.: On the evolution of compressive pulses in an exploding atmosphere: initial behavior, J. Fluid Mech., 94, pp. 195 – 208 (1979).MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag, New York, Inc. 1992

Authors and Affiliations

  • A. K. Kapila
    • 1
  1. 1.Rensselaer Polytechnic InstituteTroyUSA

Personalised recommendations