Skip to main content

Mechanisms of Flame Stabilization in Subsonic And Supersonic Flows

  • Chapter
Major Research Topics in Combustion

Part of the book series: ICASE/NASA LaRC Series ((ICASE/NASA))

Abstract

Current understanding on the fundamental physico-chemical mechanisms governing the structure and stabilization of premixed and diffusion flames in subsonic and supersonic laminar and turbulent flows are classified and discussed, with emphasis on possible applications in supersonic propulsion. Specific topics discussed include the design concepts of supersonic engine operation and fuel injection, the ignition of combustibles in homogeneous and diffusive media, the extinction of premixed and diffusion flames through reactant leakage, heat loss, and aerodynamic stretching, the stabilization and liftoff of inverted, burner-stabilized, and rim-stabilized flames, and the various proposed mechanisms for the stabilization and blowout of jet diffusion flames. The fundamental similarities and differences between the various critical phenomena are indicated. Research topics of potential importance to supersonic combustion are suggested.

This work has been supported by NASA Ames-Dryden Research Center under Grant NCC 2- 374.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrère, M., “Flame Stabilization in a Supersonic Combustor,” U.S.A.-French Joint Workshop on Turbulent Reactive Flows (R. Borghi and S. N. B. Murthy, Eds.), Springer-Verlag, NY, pp. 847–862, 1989.

    Google Scholar 

  2. Broadwell, J. E., Dahm, W. J. and Mungal, G., “Blowout of Turbulent Diffusion Flames,” Twentieth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 303 – 310, 1985.

    Google Scholar 

  3. Buckmaster, J. D. and Ludford, G. S. S., Theory of Laminar Flames, Cambridge University Press, Cambridge, 1982.

    Book  MATH  Google Scholar 

  4. Chao, B. H. and Law, C. K., “Duality, Pulsating Instability, and Product Dissociation in Burner- Stabilized Flames,” Combust. Sci. Tech. 62, pp. 211 – 237, 1988.

    Google Scholar 

  5. Cheng, S. I. and Kovitz, A. A., “Ignition in the Laminar Wake of a Flat Plate,” Sixth Symposium (International) on Combustion, Reinhold Publishing Co., NY, pp. 418 – 427, 1957.

    Google Scholar 

  6. Cheng, S. I., “Hypersonic Combustion,” Prog. in Energy Combust. Sci. 15, pp. 183-220, 1989.

    Google Scholar 

  7. Chung, S. H. and Law, C. K., “Structure and Extinction of Convective Diffusion Flames with General Lewis Numbers,” Combust. Flame 52, pp. 59 – 79, 1983.

    Article  Google Scholar 

  8. Clavin, P., “Dynamic Behavior of Premixed Flame Fronts in Laminar and Turbulent Flows,” Prog. Energy Combust. Sci. 11, pp. 1 – 59, 1985.

    Google Scholar 

  9. Egolfopoulos, F. N. and Law, C. K., “Chain Mechanisms in the Overall Reaction Orders in Laminar Flame Propagation,” Combust. Flame 80, pp. 7–16,

    Google Scholar 

  10. Egolfopoulos, F. N. and Law, C. K., “An Experimental and Computational Study of the Burning Rates of Near-Stoichiometric to Ultra-Lean H2/O2/N2 Flames,” Twenty-Third Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, 1991 (In Press).

    Google Scholar 

  11. Eickhoff, H., Lenze, B. and Leuckel, W., “Experimental Investigation on the Stabilization Mechanism of Jet Diffusion Flames,” Twentieth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 311 – 318, 1985.

    Google Scholar 

  12. Ferri, A., “Review of SCRAMJET Propulsion Technology,” J. Aircraft, 5, pp. 3 – 10, 1968.

    Article  Google Scholar 

  13. Ferri, A., “Mixing Controlled Supersonic Combustion,” Annual Rev. Fluid Mech. 5, Anual Reviews Inc., Palo Alto, CA, pp. 301 – 308, 1973.

    Google Scholar 

  14. Joulin, G. and Clavin, P. “Linear Stability Analysis of Nonadiabatic Flames: A Thermal-Diffusional Model,” Combust. Flame 35, pp. 139 – 153, 1979.

    Article  Google Scholar 

  15. Lakshmisha, K. N., Paul, P. J., Rajan, N. K., Goyal, G. and Mukunda, H. S., “Behavior of Methane- Oxygen-Nitrogen Mixtures Near Flammability Limits,” Twenty-Second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1573 – 1578, 1989.

    Google Scholar 

  16. Law, C. K. and Law, H. K., “Thermal Ignition Analysis in Boundary Layer Flows,” J. Fluid Mech. 92, pp. 97 – 108, 1979.

    Article  ADS  MATH  Google Scholar 

  17. Law, C. K. and Law, H. K., “A Theoretical Study of Ignition in the Laminar Mixing Layer,” J. Heat Transfer 104, pp. 329 – 337, 1982.

    Article  Google Scholar 

  18. Law, C. K., Li, T. X., Chung, S. H., Kim, J. S. and Zhu, D. L., “On the Structure and Extinction Dynamics of Partially-Premixed Flames: Theory and Experiment,” Combust. Sci. Tech. 64, pp. 199 – 232, 1989.

    Google Scholar 

  19. Law, C. K., “Dynamics of Stretched Flames,” Twenty-Second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1381 – 1402, 1989.

    Google Scholar 

  20. Lewis, B. and von Elbe, G., Combustionf Flames and Explosions of Gases, Academic Press, NY, 1965.

    Google Scholar 

  21. Liñán, A., “The Asymptotic Structure of Counterflow Diffusion Flames for Large Activation Energies,” Acta Astronautica 1, pp. 1007 – 1039, 1974.

    Article  Google Scholar 

  22. Marble, F. and Adamson, T. C. Jr., “Ignition and Combustion in a Laminar Mixing Zone,” Jet Propulsion 24, pp. 85 – 94, 1954.

    Google Scholar 

  23. Matalon, M. and Buckmaster, J. D., “Anomalous Lewis Number Effects in Tribrachial Flames,” Twenty- Second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1527 – 1535, 1989.

    Google Scholar 

  24. Northam, G. B. and Anderson, G. Y., “Supersonic Combustion Ramjet Research at Langley,” AIAA Paper 86- 0159, AIAA 24th Aerospace Sciences Meeting, Reno, NE, Jan., 1986.

    Google Scholar 

  25. Peters, N. and Williams, F. A., “Liftoff Characteristics of Turbulent Jet Diffusion Flames,” AIAA J. 21, pp. 423 – 429, 1983.

    Article  ADS  MATH  Google Scholar 

  26. Peters, N., “Laminar Flamelet Concepts in Turbulent Combustion,” Twenty-First Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1231 – 1250, 1987.

    Google Scholar 

  27. Savas, O. and Gollahalli, S. R., “Flow Structure in Near-Nozzle Region of Gas Jet Flames,” AIAA J. 24, pp. 1137 – 1140, 1986.

    Article  ADS  Google Scholar 

  28. Spalding, D. B., “A Theory of Inflammability Limits and Flame Quenching,” Proc. Roy. Soc. London A240, pp. 83 – 100, 1957.

    MathSciNet  Google Scholar 

  29. Spalding, D. B. and Yumlu, V. S., “Experimental Demonstration of the Existence of Two Flame Speeds,” Combust. Flame 3, pp. 553 – 556, 1959.

    Article  Google Scholar 

  30. Sivashinsky, G. I., “Structure of Bunsen flames,” J. Chem. Phys. 62, pp. 638 - 643, 1975.

    Article  ADS  Google Scholar 

  31. Sivashinsky, G. I., “On a Distorted Flame Front as a Hydrodynamic Discontinuity,” Acta Astronautica 3, pp. 889 – 918, 1976.

    Article  MathSciNet  Google Scholar 

  32. Swithenbank, J., Eames, I., Chin, S., Ewan, B., Yang, Z., Cao, J. and Zhao, X., “Turbulent Mixing in Supersonic Combustion Systems,” AIAA Paper 89-0260, AIAA 27th Aerospace Science Meeting, Reno, Ne, Jan., 1989.

    Google Scholar 

  33. Takahashi, F Mizomoto, M., Ikai, S. and Futaki, N., “Lifting Mechanisim of Free Jet Diffusion Flames,” Twentieth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 295 – 302, 1985.

    Google Scholar 

  34. Waltrup, P. J., “Liquid Fueled Supersonic Combustion Ramjets: A Research Perspective of the Past, Present and Future,” AIAA Paper 86-0158, AIAA 24th Aerospace Science Meeting, Reno, NE, Jan, 1986.

    Google Scholar 

  35. Williams, F. A., Combustion Theory, Benjamin Cummins, Palo Alto, CA, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag, New York, Inc.

About this chapter

Cite this chapter

Law, C.K. (1992). Mechanisms of Flame Stabilization in Subsonic And Supersonic Flows. In: Hussaini, M.Y., Kumar, A., Voigt, R.G. (eds) Major Research Topics in Combustion. ICASE/NASA LaRC Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2884-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2884-4_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7708-8

  • Online ISBN: 978-1-4612-2884-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics